#!/usr/bin/env python from __future__ import annotations import argparse import pathlib import tarfile import gradio as gr from model import AppDetModel, AppPoseModel DESCRIPTION = '''# ViTPose This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).''' FOOTER = 'visitor badge' def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') return parser.parse_args() def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def extract_tar() -> None: if pathlib.Path('mmdet_configs/configs').exists(): return with tarfile.open('mmdet_configs/configs.tar') as f: f.extractall('mmdet_configs') def main(): args = parse_args() extract_tar() det_model = AppDetModel(device=args.device) pose_model = AppPoseModel(device=args.device) with gr.Blocks(theme=args.theme, css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Box(): gr.Markdown('## Step 1') with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input Image', type='numpy') with gr.Row(): detector_name = gr.Dropdown(list( det_model.MODEL_DICT.keys()), value=det_model.model_name, label='Detector') with gr.Row(): detect_button = gr.Button(value='Detect') det_preds = gr.Variable() with gr.Column(): with gr.Row(): detection_visualization = gr.Image( label='Detection Result', type='numpy', elem_id='det-result') with gr.Row(): vis_det_score_threshold = gr.Slider( 0, 1, step=0.05, value=0.5, label='Visualization Score Threshold') with gr.Row(): redraw_det_button = gr.Button(value='Redraw') with gr.Row(): paths = sorted(pathlib.Path('images').rglob('*.jpg')) example_images = gr.Dataset(components=[input_image], samples=[[path.as_posix()] for path in paths]) with gr.Box(): gr.Markdown('## Step 2') with gr.Row(): with gr.Column(): with gr.Row(): pose_model_name = gr.Dropdown( list(pose_model.MODEL_DICT.keys()), value=pose_model.model_name, label='Pose Model') det_score_threshold = gr.Slider( 0, 1, step=0.05, value=0.5, label='Box Score Threshold') with gr.Row(): predict_button = gr.Button(value='Predict') pose_preds = gr.Variable() with gr.Column(): with gr.Row(): pose_visualization = gr.Image(label='Result', type='numpy', elem_id='pose-result') with gr.Row(): vis_kpt_score_threshold = gr.Slider( 0, 1, step=0.05, value=0.3, label='Visualization Score Threshold') with gr.Row(): vis_dot_radius = gr.Slider(1, 10, step=1, value=4, label='Dot Radius') with gr.Row(): vis_line_thickness = gr.Slider(1, 10, step=1, value=2, label='Line Thickness') with gr.Row(): redraw_pose_button = gr.Button(value='Redraw') gr.Markdown(FOOTER) detector_name.change(fn=det_model.set_model, inputs=detector_name, outputs=None) detect_button.click(fn=det_model.run, inputs=[ detector_name, input_image, vis_det_score_threshold, ], outputs=[ det_preds, detection_visualization, ]) redraw_det_button.click(fn=det_model.visualize_detection_results, inputs=[ input_image, det_preds, vis_det_score_threshold, ], outputs=detection_visualization) pose_model_name.change(fn=pose_model.set_model, inputs=pose_model_name, outputs=None) predict_button.click(fn=pose_model.run, inputs=[ pose_model_name, input_image, det_preds, det_score_threshold, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=[ pose_preds, pose_visualization, ]) redraw_pose_button.click(fn=pose_model.visualize_pose_results, inputs=[ input_image, pose_preds, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=pose_visualization) example_images.click( fn=set_example_image, inputs=example_images, outputs=input_image, ) demo.launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()