#!/usr/bin/env python from __future__ import annotations import os import pathlib import shlex import subprocess import tarfile if os.getenv("SYSTEM") == "spaces": subprocess.run(shlex.split("pip install click==7.1.2")) subprocess.run(shlex.split("pip install typer==0.9.4")) import mim mim.uninstall("mmcv-full", confirm_yes=True) mim.install("mmcv-full==1.5.0", is_yes=True) subprocess.run(shlex.split("pip uninstall -y opencv-python")) subprocess.run(shlex.split("pip uninstall -y opencv-python-headless")) subprocess.run(shlex.split("pip install opencv-python-headless==4.8.0.74")) import gradio as gr from model import AppDetModel, AppPoseModel DESCRIPTION = "# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)" def extract_tar() -> None: if pathlib.Path("mmdet_configs/configs").exists(): return with tarfile.open("mmdet_configs/configs.tar") as f: f.extractall("mmdet_configs") extract_tar() det_model = AppDetModel() pose_model = AppPoseModel() with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Group(): gr.Markdown("## Step 1") with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label="Input Image", type="numpy") with gr.Row(): detector_name = gr.Dropdown( label="Detector", choices=list(det_model.MODEL_DICT.keys()), value=det_model.model_name ) with gr.Row(): detect_button = gr.Button("Detect") det_preds = gr.State() with gr.Column(): with gr.Row(): detection_visualization = gr.Image(label="Detection Result", type="numpy", elem_id="det-result") with gr.Row(): vis_det_score_threshold = gr.Slider( label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5 ) with gr.Row(): redraw_det_button = gr.Button(value="Redraw") with gr.Row(): paths = sorted(pathlib.Path("images").rglob("*.jpg")) example_images = gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image) with gr.Group(): gr.Markdown("## Step 2") with gr.Row(): with gr.Column(): with gr.Row(): pose_model_name = gr.Dropdown( label="Pose Model", choices=list(pose_model.MODEL_DICT.keys()), value=pose_model.model_name ) det_score_threshold = gr.Slider( label="Box Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5 ) with gr.Row(): predict_button = gr.Button("Predict") pose_preds = gr.State() with gr.Column(): with gr.Row(): pose_visualization = gr.Image(label="Result", type="numpy", elem_id="pose-result") with gr.Row(): vis_kpt_score_threshold = gr.Slider( label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.3 ) with gr.Row(): vis_dot_radius = gr.Slider(label="Dot Radius", minimum=1, maximum=10, step=1, value=4) with gr.Row(): vis_line_thickness = gr.Slider(label="Line Thickness", minimum=1, maximum=10, step=1, value=2) with gr.Row(): redraw_pose_button = gr.Button("Redraw") detector_name.change(fn=det_model.set_model, inputs=detector_name) detect_button.click( fn=det_model.run, inputs=[ detector_name, input_image, vis_det_score_threshold, ], outputs=[ det_preds, detection_visualization, ], ) redraw_det_button.click( fn=det_model.visualize_detection_results, inputs=[ input_image, det_preds, vis_det_score_threshold, ], outputs=detection_visualization, ) pose_model_name.change(fn=pose_model.set_model, inputs=pose_model_name) predict_button.click( fn=pose_model.run, inputs=[ pose_model_name, input_image, det_preds, det_score_threshold, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=[ pose_preds, pose_visualization, ], ) redraw_pose_button.click( fn=pose_model.visualize_pose_results, inputs=[ input_image, pose_preds, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=pose_visualization, ) if __name__ == "__main__": demo.queue(max_size=10).launch()