#!/usr/bin/env python from __future__ import annotations import pathlib import tarfile import gradio as gr from model import AppDetModel, AppPoseModel DESCRIPTION = '# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)' def extract_tar() -> None: if pathlib.Path('mmdet_configs/configs').exists(): return with tarfile.open('mmdet_configs/configs.tar') as f: f.extractall('mmdet_configs') extract_tar() det_model = AppDetModel() pose_model = AppPoseModel() with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Box(): gr.Markdown('## Step 1') with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input Image', type='numpy') with gr.Row(): detector_name = gr.Dropdown( label='Detector', choices=list(det_model.MODEL_DICT.keys()), value=det_model.model_name) with gr.Row(): detect_button = gr.Button('Detect') det_preds = gr.Variable() with gr.Column(): with gr.Row(): detection_visualization = gr.Image( label='Detection Result', type='numpy', elem_id='det-result') with gr.Row(): vis_det_score_threshold = gr.Slider( label='Visualization Score Threshold', minimum=0, maximum=1, step=0.05, value=0.5) with gr.Row(): redraw_det_button = gr.Button(value='Redraw') with gr.Row(): paths = sorted(pathlib.Path('images').rglob('*.jpg')) example_images = gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image) with gr.Box(): gr.Markdown('## Step 2') with gr.Row(): with gr.Column(): with gr.Row(): pose_model_name = gr.Dropdown( label='Pose Model', choices=list(pose_model.MODEL_DICT.keys()), value=pose_model.model_name) det_score_threshold = gr.Slider(label='Box Score Threshold', minimum=0, maximum=1, step=0.05, value=0.5) with gr.Row(): predict_button = gr.Button('Predict') pose_preds = gr.Variable() with gr.Column(): with gr.Row(): pose_visualization = gr.Image(label='Result', type='numpy', elem_id='pose-result') with gr.Row(): vis_kpt_score_threshold = gr.Slider( label='Visualization Score Threshold', minimum=0, maximum=1, step=0.05, value=0.3) with gr.Row(): vis_dot_radius = gr.Slider(label='Dot Radius', minimum=1, maximum=10, step=1, value=4) with gr.Row(): vis_line_thickness = gr.Slider(label='Line Thickness', minimum=1, maximum=10, step=1, value=2) with gr.Row(): redraw_pose_button = gr.Button('Redraw') detector_name.change(fn=det_model.set_model, inputs=detector_name, outputs=None) detect_button.click(fn=det_model.run, inputs=[ detector_name, input_image, vis_det_score_threshold, ], outputs=[ det_preds, detection_visualization, ]) redraw_det_button.click(fn=det_model.visualize_detection_results, inputs=[ input_image, det_preds, vis_det_score_threshold, ], outputs=detection_visualization) pose_model_name.change(fn=pose_model.set_model, inputs=pose_model_name, outputs=None) predict_button.click(fn=pose_model.run, inputs=[ pose_model_name, input_image, det_preds, det_score_threshold, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=[ pose_preds, pose_visualization, ]) redraw_pose_button.click(fn=pose_model.visualize_pose_results, inputs=[ input_image, pose_preds, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=pose_visualization) demo.queue(max_size=10).launch()