Spaces:
Sleeping
Sleeping
Grandediw
commited on
Commit
·
724692c
1
Parent(s):
c757a2d
Updates
Browse files- app.py +18 -8
- requirements.txt +4 -3
app.py
CHANGED
@@ -1,14 +1,24 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
3 |
|
4 |
st.set_page_config(page_title="Hugging Face Chatbot", layout="centered")
|
5 |
-
st.title("Hugging Face Chatbot")
|
6 |
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
-
#
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
chat_pipeline = pipeline(
|
13 |
"text-generation",
|
14 |
model=model,
|
@@ -33,19 +43,19 @@ for message in st.session_state.messages:
|
|
33 |
|
34 |
# User input
|
35 |
if prompt := st.chat_input("Ask me anything:"):
|
36 |
-
# Display user message
|
37 |
st.chat_message("user").markdown(prompt)
|
38 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
39 |
|
40 |
# Generate response
|
41 |
with st.spinner("Thinking..."):
|
|
|
42 |
response = chat_pipeline(prompt)[0]["generated_text"]
|
43 |
-
#
|
44 |
-
# If that's the case, remove the prompt from the start.
|
45 |
if response.startswith(prompt):
|
46 |
response = response[len(prompt):].strip()
|
47 |
|
48 |
-
# Display
|
49 |
with st.chat_message("assistant"):
|
50 |
st.markdown(response)
|
51 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
from peft import PeftModel
|
4 |
|
5 |
st.set_page_config(page_title="Hugging Face Chatbot", layout="centered")
|
6 |
+
st.title("Hugging Face Chatbot with LoRA")
|
7 |
|
8 |
@st.cache_resource
|
9 |
def load_model():
|
10 |
+
# Replace this with the actual base model used during LoRA fine-tuning
|
11 |
+
base_model_name = "unsloth/Llama-3.2-1B-Instruct"
|
12 |
+
|
13 |
+
# Load the base model and tokenizer
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_fast=False)
|
15 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, device_map="auto", trust_remote_code=True)
|
16 |
+
|
17 |
+
# Load the LoRA adapter weights
|
18 |
+
# Replace "Grandediw/lora_model_finetuned" with your actual LoRA model repo
|
19 |
+
model = PeftModel.from_pretrained(base_model, "Grandediw/lora_model_finetuned")
|
20 |
+
|
21 |
+
# Create a pipeline for text generation
|
22 |
chat_pipeline = pipeline(
|
23 |
"text-generation",
|
24 |
model=model,
|
|
|
43 |
|
44 |
# User input
|
45 |
if prompt := st.chat_input("Ask me anything:"):
|
46 |
+
# Display user message
|
47 |
st.chat_message("user").markdown(prompt)
|
48 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
49 |
|
50 |
# Generate response
|
51 |
with st.spinner("Thinking..."):
|
52 |
+
# Generate text with the pipeline
|
53 |
response = chat_pipeline(prompt)[0]["generated_text"]
|
54 |
+
# Remove the prompt from the start if it's included
|
|
|
55 |
if response.startswith(prompt):
|
56 |
response = response[len(prompt):].strip()
|
57 |
|
58 |
+
# Display assistant response
|
59 |
with st.chat_message("assistant"):
|
60 |
st.markdown(response)
|
61 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
streamlit
|
2 |
-
transformers
|
3 |
-
torch
|
|
|
|
1 |
+
streamlit==1.25.0
|
2 |
+
transformers==4.34.0
|
3 |
+
torch==2.0.1
|
4 |
+
peft==0.7.0
|