Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,769 Bytes
13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 ae1f8f9 13531f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
"""
Modified from https://github.com/philz1337x/clarity-upscaler
which is a copy of https://github.com/AUTOMATIC1111/stable-diffusion-webui
which is a copy of https://github.com/victorca25/iNNfer
which is a copy of https://github.com/xinntao/ESRGAN
"""
import math
from pathlib import Path
from typing import NamedTuple
import numpy as np
import numpy.typing as npt
import torch
import torch.nn as nn
from PIL import Image
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
return nn.Sequential(
nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
)
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
"""
def __init__(self, nf: int = 64, gc: int = 32) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.conv1 = conv_block(nf, gc)
self.conv2 = conv_block(nf + gc, gc)
self.conv3 = conv_block(nf + 2 * gc, gc)
self.conv4 = conv_block(nf + 3 * gc, gc)
# Wrapped in Sequential because of key in state dict.
self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(self, nf: int) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.RDB1 = ResidualDenseBlock_5C(nf)
self.RDB2 = ResidualDenseBlock_5C(nf)
self.RDB3 = ResidualDenseBlock_5C(nf)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class Upsample2x(nn.Module):
"""Upsample 2x."""
def __init__(self) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
def forward(self, x: torch.Tensor) -> torch.Tensor:
return nn.functional.interpolate(x, scale_factor=2.0) # type: ignore
class ShortcutBlock(nn.Module):
"""Elementwise sum the output of a submodule to its input"""
def __init__(self, submodule: nn.Module) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.sub = submodule
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.sub(x)
class RRDBNet(nn.Module):
def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
assert in_nc % 4 != 0 # in_nc is 3
self.model = nn.Sequential(
nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
ShortcutBlock(
nn.Sequential(
*(RRDB(nf) for _ in range(nb)),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
)
),
Upsample2x(),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
Upsample2x(),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
# this code is adapted from https://github.com/victorca25/iNNfer
scale2x = 0
scalemin = 6
n_uplayer = 0
out_nc = 0
nb = 0
for block in list(state_dict):
parts = block.split(".")
n_parts = len(parts)
if n_parts == 5 and parts[2] == "sub":
nb = int(parts[3])
elif n_parts == 3:
part_num = int(parts[1])
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
scale2x += 1
if part_num > n_uplayer:
n_uplayer = part_num
out_nc = state_dict[block].shape[0]
assert "conv1x1" not in block # no ESRGANPlus
nf = state_dict["model.0.weight"].shape[0]
in_nc = state_dict["model.0.weight"].shape[1]
scale = 2**scale2x
assert out_nc > 0
assert nb > 0
return in_nc, out_nc, nf, nb, scale # 3, 3, 64, 23, 4
Tile = tuple[int, int, Image.Image]
Tiles = list[tuple[int, int, list[Tile]]]
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
class Grid(NamedTuple):
tiles: Tiles
tile_w: int
tile_h: int
image_w: int
image_h: int
overlap: int
# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
w = image.width
h = image.height
non_overlap_width = tile_w - overlap
non_overlap_height = tile_h - overlap
cols = max(1, math.ceil((w - overlap) / non_overlap_width))
rows = max(1, math.ceil((h - overlap) / non_overlap_height))
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
grid = Grid([], tile_w, tile_h, w, h, overlap)
for row in range(rows):
row_images: list[Tile] = []
y1 = max(min(int(row * dy), h - tile_h), 0)
y2 = min(y1 + tile_h, h)
for col in range(cols):
x1 = max(min(int(col * dx), w - tile_w), 0)
x2 = min(x1 + tile_w, w)
tile = image.crop((x1, y1, x2, y2))
row_images.append((x1, tile_w, tile))
grid.tiles.append((y1, tile_h, row_images))
return grid
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
def combine_grid(grid: Grid):
def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
r = r * 255 / grid.overlap
return Image.fromarray(r.astype(np.uint8), "L")
mask_w = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
)
mask_h = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
)
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
for y, h, row in grid.tiles:
combined_row = Image.new("RGB", (grid.image_w, h))
for x, w, tile in row:
if x == 0:
combined_row.paste(tile, (0, 0))
continue
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
if y == 0:
combined_image.paste(combined_row, (0, 0))
continue
combined_image.paste(
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
(0, y),
mask=mask_h,
)
combined_image.paste(
combined_row.crop((0, grid.overlap, combined_row.width, h)),
(0, y + grid.overlap),
)
return combined_image
class UpscalerESRGAN:
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
self.model_path = model_path
self.device = device
self.model = self.load_model(model_path)
self.to(device, dtype)
def __call__(self, img: Image.Image) -> Image.Image:
return self.upscale_without_tiling(img)
def to(self, device: torch.device, dtype: torch.dtype):
self.device = device
self.dtype = dtype
self.model.to(device=device, dtype=dtype)
def load_model(self, path: Path) -> RRDBNet:
filename = path
state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device) # type: ignore
in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
assert upscale == 4, "Only 4x upscaling is supported"
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
model.load_state_dict(state_dict)
model.eval()
return model
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
img_np = np.array(img)
img_np = img_np[:, :, ::-1]
img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
img_t = torch.from_numpy(img_np).float() # type: ignore
img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
with torch.no_grad():
output = self.model(img_t)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255.0 * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
return Image.fromarray(output, "RGB")
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
img = img.convert("RGB")
grid = split_grid(img)
newtiles: Tiles = []
scale_factor: int = 1
for y, h, row in grid.tiles:
newrow: list[Tile] = []
for tiledata in row:
x, w, tile = tiledata
output = self.upscale_without_tiling(tile)
scale_factor = output.width // tile.width
newrow.append((x * scale_factor, w * scale_factor, output))
newtiles.append((y * scale_factor, h * scale_factor, newrow))
newgrid = Grid(
newtiles,
grid.tile_w * scale_factor,
grid.tile_h * scale_factor,
grid.image_w * scale_factor,
grid.image_h * scale_factor,
grid.overlap * scale_factor,
)
output = combine_grid(newgrid)
return output
|