commented unused part in plots.py
Browse files
plots.py
CHANGED
@@ -8,87 +8,87 @@ from word2vec import *
|
|
8 |
from sklearn.preprocessing import StandardScaler
|
9 |
|
10 |
|
11 |
-
def make_3d_plot(new_3d_vectors):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
|
43 |
-
import plotly.express as px
|
44 |
|
45 |
|
46 |
-
def make_3d_plot2(df):
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
|
55 |
|
56 |
-
def make_3d_plot3(vectors_list, word, time_slice_model):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
|
71 |
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
92 |
|
93 |
|
94 |
|
|
|
8 |
from sklearn.preprocessing import StandardScaler
|
9 |
|
10 |
|
11 |
+
# def make_3d_plot(new_3d_vectors):
|
12 |
+
# """
|
13 |
+
# Turn DataFrame of 3D vectors into a 3D plot
|
14 |
+
# DataFrame structure: ['word', 'cosine_sim', '3d_vector']
|
15 |
+
# """
|
16 |
+
# fig = plt.figure()
|
17 |
+
# ax = fig.add_subplot(projection='3d')
|
18 |
|
19 |
+
# plt.ion()
|
20 |
|
21 |
+
# # Unpack vectors and labels from DataFrame
|
22 |
+
# labels = new_3d_vectors['word']
|
23 |
+
# x = new_3d_vectors['3d_vector'].apply(lambda v: v[0])
|
24 |
+
# y = new_3d_vectors['3d_vector'].apply(lambda v: v[1])
|
25 |
+
# z = new_3d_vectors['3d_vector'].apply(lambda v: v[2])
|
26 |
|
27 |
+
# # Plot points
|
28 |
+
# ax.scatter(x, y, z)
|
29 |
|
30 |
+
# # Add labels
|
31 |
+
# for i, label in enumerate(labels):
|
32 |
+
# ax.text(x[i], y[i], z[i], label)
|
33 |
|
34 |
+
# # Set labels and title
|
35 |
+
# ax.set_xlabel('X')
|
36 |
+
# ax.set_ylabel('Y')
|
37 |
+
# ax.set_zlabel('Z')
|
38 |
+
# ax.set_title('3D plot of word vectors')
|
39 |
|
40 |
+
# return fig
|
41 |
|
42 |
|
43 |
+
# import plotly.express as px
|
44 |
|
45 |
|
46 |
+
# def make_3d_plot2(df):
|
47 |
+
# """
|
48 |
+
# Turn DataFrame of 3D vectors into a 3D plot using plotly
|
49 |
+
# DataFrame structure: ['word', 'cosine_sim', '3d_vector']
|
50 |
+
# """
|
51 |
+
# vectors = df['3d_vector'].tolist()
|
52 |
+
# fig = px.scatter_3d(df, x=[v[0] for v in vectors], y=[v[1] for v in vectors], z=[v[2] for v in vectors], text=df['word'])
|
53 |
+
# return fig
|
54 |
|
55 |
|
56 |
+
# def make_3d_plot3(vectors_list, word, time_slice_model):
|
57 |
+
# """
|
58 |
+
# Turn list of 100D vectors into a 3D plot using UMAP and Plotly.
|
59 |
+
# List structure: [(word, model_name, vector, cosine_sim)]
|
60 |
+
# """
|
61 |
+
# # Load model
|
62 |
+
# model = load_word2vec_model(f'models/{time_slice_model}.model')
|
63 |
|
64 |
+
# # Make UMAP model and fit it to the vectors
|
65 |
+
# umap_model = umap.UMAP(n_components=3)
|
66 |
+
# umap_model.fit(model.wv.vectors)
|
67 |
|
68 |
+
# # Transform the vectors to 3D
|
69 |
+
# transformed_vectors = umap_model.transform(model.wv.vectors)
|
70 |
|
71 |
|
72 |
+
# # Create DataFrame from the transformed vectors
|
73 |
+
# df = pd.DataFrame(transformed_vectors, columns=['x', 'y', 'z'])
|
74 |
|
75 |
+
# # Add word and cosine similarity to DataFrame
|
76 |
+
# df['word'] = model.wv.index_to_key
|
77 |
|
78 |
+
# # Filter the DataFrame for words in vectors_list and add cosine similarity
|
79 |
+
# word_list = [v[0] for v in vectors_list]
|
80 |
+
# cosine_sim_list = [v[3] for v in vectors_list]
|
81 |
|
82 |
+
# # Ensure that the word list and cosine similarity list are aligned properly
|
83 |
+
# df = df[df['word'].isin(word_list)]
|
84 |
+
# df['cosine_sim'] = cosine_sim_list
|
85 |
|
86 |
+
# # Create plot
|
87 |
+
# fig = px.scatter_3d(df, x='x', y='y', z='z', text='word', color='cosine_sim', color_continuous_scale='Reds')
|
88 |
+
# fig.update_traces(marker=dict(size=5))
|
89 |
+
# fig.update_layout(title=f'3D plot of nearest neighbours to {word}')
|
90 |
|
91 |
+
# return fig, df
|
92 |
|
93 |
|
94 |
|