Created 3d graph functionality, not optimal yet
Browse files- app.py +37 -1
- plots.py +144 -0
- vector_graph.py +73 -0
- word2vec.py +26 -0
app.py
CHANGED
@@ -3,6 +3,8 @@ from streamlit_option_menu import option_menu
|
|
3 |
from word2vec import *
|
4 |
import pandas as pd
|
5 |
from autocomplete import *
|
|
|
|
|
6 |
|
7 |
st.set_page_config(page_title="Ancient Greek Word2Vec", layout="centered")
|
8 |
|
@@ -112,9 +114,43 @@ elif active_tab == "Cosine similarity":
|
|
112 |
|
113 |
# 3D graph tab
|
114 |
elif active_tab == "3D graph":
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
with st.container():
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
# Dictionary tab
|
119 |
elif active_tab == "Dictionary":
|
120 |
with st.container():
|
|
|
3 |
from word2vec import *
|
4 |
import pandas as pd
|
5 |
from autocomplete import *
|
6 |
+
from vector_graph import *
|
7 |
+
from plots import *
|
8 |
|
9 |
st.set_page_config(page_title="Ancient Greek Word2Vec", layout="centered")
|
10 |
|
|
|
114 |
|
115 |
# 3D graph tab
|
116 |
elif active_tab == "3D graph":
|
117 |
+
col1, col2 = st.columns(2)
|
118 |
+
|
119 |
+
# Load compressed word list
|
120 |
+
compressed_word_list_filename = 'corpora/compass_filtered.pkl.gz'
|
121 |
+
all_words = load_compressed_word_list(compressed_word_list_filename)
|
122 |
+
|
123 |
with st.container():
|
124 |
+
with col1:
|
125 |
+
word = st.multiselect("Enter a word", all_words, max_selections=1)
|
126 |
+
if len(word) > 0:
|
127 |
+
word = word[0]
|
128 |
+
|
129 |
+
with col2:
|
130 |
+
time_slice = st.selectbox("Time slice", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
|
131 |
+
|
132 |
+
n = st.slider("Number of words", 1, 50, 15)
|
133 |
|
134 |
+
graph_button = st.button("Create 3D graph")
|
135 |
+
|
136 |
+
if graph_button:
|
137 |
+
time_slice_model = convert_time_name_to_model(time_slice)
|
138 |
+
nearest_neighbours_vectors = get_nearest_neighbours_vectors(word, time_slice_model, n)
|
139 |
+
# nearest_neighbours_3d_vectors = create_3d_vectors(word, time_slice_model, nearest_neighbours_vectors)
|
140 |
+
st.dataframe(nearest_neighbours_vectors)
|
141 |
+
# new_3d_vectors = nearest_neighbours_to_pca_vectors(word, time_slice, nearest_neighbours_vectors)
|
142 |
+
# st.dataframe(new_3d_vectors)
|
143 |
+
|
144 |
+
|
145 |
+
fig, df = make_3d_plot4(nearest_neighbours_vectors, word, time_slice_model)
|
146 |
+
|
147 |
+
st.dataframe(df)
|
148 |
+
|
149 |
+
st.plotly_chart(fig)
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
# Dictionary tab
|
155 |
elif active_tab == "Dictionary":
|
156 |
with st.container():
|
plots.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
from mpl_toolkits.mplot3d import Axes3D
|
5 |
+
import umap
|
6 |
+
import pandas as pd
|
7 |
+
from word2vec import *
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
|
10 |
+
|
11 |
+
def make_3d_plot(new_3d_vectors):
|
12 |
+
"""
|
13 |
+
Turn DataFrame of 3D vectors into a 3D plot
|
14 |
+
DataFrame structure: ['word', 'cosine_sim', '3d_vector']
|
15 |
+
"""
|
16 |
+
fig = plt.figure()
|
17 |
+
ax = fig.add_subplot(projection='3d')
|
18 |
+
|
19 |
+
plt.ion()
|
20 |
+
|
21 |
+
# Unpack vectors and labels from DataFrame
|
22 |
+
labels = new_3d_vectors['word']
|
23 |
+
x = new_3d_vectors['3d_vector'].apply(lambda v: v[0])
|
24 |
+
y = new_3d_vectors['3d_vector'].apply(lambda v: v[1])
|
25 |
+
z = new_3d_vectors['3d_vector'].apply(lambda v: v[2])
|
26 |
+
|
27 |
+
# Plot points
|
28 |
+
ax.scatter(x, y, z)
|
29 |
+
|
30 |
+
# Add labels
|
31 |
+
for i, label in enumerate(labels):
|
32 |
+
ax.text(x[i], y[i], z[i], label)
|
33 |
+
|
34 |
+
# Set labels and title
|
35 |
+
ax.set_xlabel('X')
|
36 |
+
ax.set_ylabel('Y')
|
37 |
+
ax.set_zlabel('Z')
|
38 |
+
ax.set_title('3D plot of word vectors')
|
39 |
+
|
40 |
+
return fig
|
41 |
+
|
42 |
+
|
43 |
+
import plotly.express as px
|
44 |
+
|
45 |
+
|
46 |
+
def make_3d_plot2(df):
|
47 |
+
"""
|
48 |
+
Turn DataFrame of 3D vectors into a 3D plot using plotly
|
49 |
+
DataFrame structure: ['word', 'cosine_sim', '3d_vector']
|
50 |
+
"""
|
51 |
+
vectors = df['3d_vector'].tolist()
|
52 |
+
fig = px.scatter_3d(df, x=[v[0] for v in vectors], y=[v[1] for v in vectors], z=[v[2] for v in vectors], text=df['word'])
|
53 |
+
return fig
|
54 |
+
|
55 |
+
|
56 |
+
def make_3d_plot3(vectors_list, word, time_slice_model):
|
57 |
+
"""
|
58 |
+
Turn list of 100D vectors into a 3D plot using UMAP and Plotly.
|
59 |
+
List structure: [(word, model_name, vector, cosine_sim)]
|
60 |
+
"""
|
61 |
+
# Load model
|
62 |
+
model = load_word2vec_model(f'models/{time_slice_model}.model')
|
63 |
+
|
64 |
+
# Make UMAP model and fit it to the vectors
|
65 |
+
umap_model = umap.UMAP(n_components=3)
|
66 |
+
umap_model.fit(model.wv.vectors)
|
67 |
+
|
68 |
+
# Transform the vectors to 3D
|
69 |
+
transformed_vectors = umap_model.transform(model.wv.vectors)
|
70 |
+
|
71 |
+
|
72 |
+
# Create DataFrame from the transformed vectors
|
73 |
+
df = pd.DataFrame(transformed_vectors, columns=['x', 'y', 'z'])
|
74 |
+
|
75 |
+
# Add word and cosine similarity to DataFrame
|
76 |
+
df['word'] = model.wv.index_to_key
|
77 |
+
|
78 |
+
# Filter the DataFrame for words in vectors_list and add cosine similarity
|
79 |
+
word_list = [v[0] for v in vectors_list]
|
80 |
+
cosine_sim_list = [v[3] for v in vectors_list]
|
81 |
+
|
82 |
+
# Ensure that the word list and cosine similarity list are aligned properly
|
83 |
+
df = df[df['word'].isin(word_list)]
|
84 |
+
df['cosine_sim'] = cosine_sim_list
|
85 |
+
|
86 |
+
# Create plot
|
87 |
+
fig = px.scatter_3d(df, x='x', y='y', z='z', text='word', color='cosine_sim', color_continuous_scale='Reds')
|
88 |
+
fig.update_traces(marker=dict(size=5))
|
89 |
+
fig.update_layout(title=f'3D plot of nearest neighbours to {word}')
|
90 |
+
|
91 |
+
return fig, df
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def make_3d_plot4(vectors_list, word, time_slice_model):
|
96 |
+
"""
|
97 |
+
Turn list of 100D vectors into a 3D plot using UMAP and Plotly.
|
98 |
+
List structure: [(word, model_name, vector, cosine_sim)]
|
99 |
+
"""
|
100 |
+
# Load model
|
101 |
+
model = load_word2vec_model(f'models/{time_slice_model}.model')
|
102 |
+
model_dict = model_dictionary(model)
|
103 |
+
|
104 |
+
|
105 |
+
# Extract vectors and names from model_dict
|
106 |
+
all_vector_names = list(model_dict.keys())
|
107 |
+
all_vectors = list(model_dict.values())
|
108 |
+
|
109 |
+
|
110 |
+
# Scale the vectors
|
111 |
+
scaler = StandardScaler()
|
112 |
+
vectors_scaled = scaler.fit_transform(all_vectors)
|
113 |
+
|
114 |
+
# Make UMAP model and fit it to the scaled vectors
|
115 |
+
umap_model = umap.UMAP(n_components=3)
|
116 |
+
umap_result = umap_model.fit_transform(vectors_scaled)
|
117 |
+
|
118 |
+
# Now umap_result contains the 3D representations of the vectors
|
119 |
+
# Associate the names with the 3D representations
|
120 |
+
result_with_names = [(all_vector_names[i], umap_result[i]) for i in range(len(all_vector_names))]
|
121 |
+
|
122 |
+
|
123 |
+
# Only keep the vectors that are in vectors_list and their cosine similarities
|
124 |
+
result_with_names = [r for r in result_with_names if r[0] in [v[0] for v in vectors_list]]
|
125 |
+
result_with_names = [(r[0], r[1], [v[3] for v in vectors_list if v[0] == r[0]][0]) for r in result_with_names]
|
126 |
+
|
127 |
+
|
128 |
+
# Create DataFrame from the transformed vectors
|
129 |
+
df = pd.DataFrame(result_with_names, columns=['word', '3d_vector', 'cosine_sim'])
|
130 |
+
|
131 |
+
# Sort dataframe by cosine_sim
|
132 |
+
df = df.sort_values(by='cosine_sim', ascending=False)
|
133 |
+
|
134 |
+
x = df['3d_vector'].apply(lambda v: v[0])
|
135 |
+
y = df['3d_vector'].apply(lambda v: v[1])
|
136 |
+
z = df['3d_vector'].apply(lambda v: v[2])
|
137 |
+
|
138 |
+
|
139 |
+
# Create plot
|
140 |
+
fig = px.scatter_3d(df, x=x, y=y, z=z, text='word', color='cosine_sim', color_continuous_scale='Reds')
|
141 |
+
fig.update_traces(marker=dict(size=5))
|
142 |
+
fig.update_layout(title=f'3D plot of nearest neighbours to {word}')
|
143 |
+
|
144 |
+
return fig, df
|
vector_graph.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from word2vec import *
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.decomposition import PCA
|
4 |
+
from sklearn.preprocessing import StandardScaler
|
5 |
+
import pandas as pd
|
6 |
+
import gensim
|
7 |
+
import umap
|
8 |
+
|
9 |
+
|
10 |
+
def create_3d_vectors(word, time_slice, nearest_neighbours_vectors):
|
11 |
+
"""
|
12 |
+
Turn word vectors into 3D vectors
|
13 |
+
"""
|
14 |
+
model = load_word2vec_model(f'models/{time_slice}.model')
|
15 |
+
|
16 |
+
# Compress all vectors to 3D
|
17 |
+
model_df = pd.DataFrame(model.wv.vectors)
|
18 |
+
pca_vectors = PCA(n_components=3)
|
19 |
+
pca_model = pca_vectors.fit_transform(model_df)
|
20 |
+
pca_model_df = pd.DataFrame(
|
21 |
+
data = pca_model,
|
22 |
+
columns = ['x', 'y', 'z']
|
23 |
+
)
|
24 |
+
pca_model_df.insert(0, 'word', model.wv.index_to_key)
|
25 |
+
|
26 |
+
return pca_model_df
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
def create_3d_models(time_slice):
|
32 |
+
"""
|
33 |
+
Create 3D models for each time slice
|
34 |
+
"""
|
35 |
+
time_slice_model = convert_time_name_to_model(time_slice)
|
36 |
+
model = load_word2vec_model(f'models/{time_slice_model}.model')
|
37 |
+
|
38 |
+
# Compress all vectors to 3D
|
39 |
+
model_df = pd.DataFrame(model.wv.vectors)
|
40 |
+
pca_vectors = PCA(n_components=3)
|
41 |
+
pca_model = pca_vectors.fit_transform(model_df)
|
42 |
+
pca_model_df = pd.DataFrame(
|
43 |
+
data = pca_model,
|
44 |
+
columns = ['x', 'y', 'z']
|
45 |
+
)
|
46 |
+
|
47 |
+
pca_model_df.insert(0, 'word', model.wv.index_to_key)
|
48 |
+
|
49 |
+
pca_model_df.to_csv(f'3d_models/{time_slice}_3d.csv', index=False)
|
50 |
+
return pca_model_df, pca_vectors
|
51 |
+
|
52 |
+
|
53 |
+
def nearest_neighbours_to_pca_vectors(word, time_slice, nearest_neighbours_vectors):
|
54 |
+
"""
|
55 |
+
Turn nearest neighbours into 3D vectors
|
56 |
+
"""
|
57 |
+
model_df = pd.read_csv(f'3d_models/{time_slice}_3d.csv')
|
58 |
+
|
59 |
+
new_data = []
|
60 |
+
|
61 |
+
# Get the word vector for the nearest neighbours
|
62 |
+
for neighbour in nearest_neighbours_vectors:
|
63 |
+
word = neighbour[0]
|
64 |
+
cosine_sim = neighbour[3]
|
65 |
+
vector_3d = model_df[model_df['word'] == word][['x', 'y', 'z']].values[0]
|
66 |
+
|
67 |
+
# Add word, cosine_sim and 3D vector to new data list
|
68 |
+
new_data.append({'word': word, 'cosine_sim': cosine_sim, '3d_vector': vector_3d})
|
69 |
+
|
70 |
+
# Convert the list of dictionaries to a DataFrame
|
71 |
+
new_df = pd.DataFrame(new_data)
|
72 |
+
|
73 |
+
return new_df
|
word2vec.py
CHANGED
@@ -235,6 +235,32 @@ def get_nearest_neighbours(word, time_slice_model, n=10, models=load_all_models(
|
|
235 |
return sorted(nearest_neighbours, key=lambda x: x[2], reverse=True)
|
236 |
|
237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
def write_to_file(data):
|
239 |
'''
|
240 |
Write the data to a file
|
|
|
235 |
return sorted(nearest_neighbours, key=lambda x: x[2], reverse=True)
|
236 |
|
237 |
|
238 |
+
def get_nearest_neighbours_vectors(word, time_slice_model, n=15):
|
239 |
+
"""
|
240 |
+
Returns the vectors of the nearest neighbours of a word
|
241 |
+
"""
|
242 |
+
model_name = convert_model_to_time_name(time_slice_model)
|
243 |
+
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
|
244 |
+
vector_1 = get_word_vector(time_slice_model, word)
|
245 |
+
nearest_neighbours = []
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
for word, index in time_slice_model.wv.key_to_index.items():
|
250 |
+
vector_2 = get_word_vector(time_slice_model, word)
|
251 |
+
cosine_sim = cosine_similarity(vector_1, vector_2)
|
252 |
+
|
253 |
+
if len(nearest_neighbours) < n:
|
254 |
+
nearest_neighbours.append((word, model_name, vector_2, cosine_sim))
|
255 |
+
else:
|
256 |
+
smallest_neighbour = min(nearest_neighbours, key=lambda x: x[3])
|
257 |
+
if cosine_sim > smallest_neighbour[3]:
|
258 |
+
nearest_neighbours.remove(smallest_neighbour)
|
259 |
+
nearest_neighbours.append((word, model_name, vector_2, cosine_sim))
|
260 |
+
|
261 |
+
return sorted(nearest_neighbours, key=lambda x: x[3], reverse=True)
|
262 |
+
|
263 |
+
|
264 |
def write_to_file(data):
|
265 |
'''
|
266 |
Write the data to a file
|