File size: 3,818 Bytes
be71848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4228940
be71848
4228940
be71848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8660
be71848
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import groq
import io
import numpy as np
import soundfile as sf

def transcribe_audio(audio, api_key):
    if audio is None:
        return ""
    
    client = groq.Client(api_key=api_key)
    
    # Convert audio to the format expected by the model
    # The model supports mp3, mp4, mpeg, mpga, m4a, wav, and webm file types 
    audio_data = audio[1]  # Get the numpy array from the tuple
    buffer = io.BytesIO()
    sf.write(buffer, audio_data, audio[0], format='wav')
    buffer.seek(0)

    bytes_audio = io.BytesIO()
    np.save(bytes_audio, audio_data)
    bytes_audio.seek(0)

    try:
        # Use Distil-Whisper English powered by Groq for transcription
        completion = client.audio.transcriptions.create(
            model="distil-whisper-large-v3-en",
            file=("audio.wav", buffer),
            response_format="text"
        )
        return completion
    except Exception as e:
        return f"Error in transcription: {str(e)}"

def generate_response(transcription, api_key):
    if not transcription:
        return "No transcription available. Please try speaking again."
    
    client = groq.Client(api_key=api_key)
    
    try:
        # Use Llama 3 70B powered by Groq for text generation
        completion = client.chat.completions.create(
            model="llama3-70b-8192",
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": transcription}
            ],
        )
        return completion.choices[0].message.content
    except Exception as e:
        return f"Error in response generation: {str(e)}"

def process_audio(audio, api_key):
    if not api_key:
        return "Please enter your Groq API key.", "API key is required."
    transcription = transcribe_audio(audio, api_key)
    response = generate_response(transcription, api_key)
    return transcription, response

# Custom CSS for the Groq badge and color scheme (feel free to edit however you wish)
custom_css = """
.gradio-container {
    background-color: #f5f5f5;
}
.gr-button-primary {
    background-color: #f55036 !important;
    border-color: #f55036 !important;
}
.gr-button-secondary {
    color: #f55036 !important;
    border-color: #f55036 !important;
}
#groq-badge {
    position: fixed;
    bottom: 20px;
    right: 20px;
    z-index: 1000;
}
"""

with gr.Blocks(theme=gr.themes.Default()) as demo:
    gr.Markdown("# 🎙️ Groq x Gradio Voice-Powered AI Assistant")
    
    api_key_input = gr.Textbox(type="password", label="Enter your Groq API Key")
    
    with gr.Row():
        audio_input = gr.Audio(label="Speak!", type="numpy")
    
    with gr.Row():
        transcription_output = gr.Textbox(label="Transcription")
        response_output = gr.Textbox(label="AI Assistant Response")
    
    submit_button = gr.Button("Process", variant="primary")
    
    # Add the Groq badge
    gr.HTML("""
    <div id="groq-badge">
        <div style="color: #f55036; font-weight: bold;">POWERED BY GROQ</div>
    </div>
    """)
    
    submit_button.click(
        process_audio,
        inputs=[audio_input, api_key_input],
        outputs=[transcription_output, response_output]
    )
    
    gr.Markdown("""
    ## How to use this app:
    1. Enter your [Groq API Key](https://console.groq.com/keys) in the provided field.
    2. Click on the microphone icon and speak your message (or forever hold your peace)! You can also provide a supported audio file. Supported audio files include mp3, mp4, mpeg, mpga, m4a, wav, and webm file types.
    3. Click the "Process" button to transcribe your speech and generate a response from our AI assistant.
    4. The transcription and AI assistant response will appear in the respective text boxes.
    
    """)

demo.launch()