diff --git a/app.py b/app.py
index 6f9572b84d6e5810643d76cdd8d922560693540e..54b296a926f178ac056500a054360b99e8265a70 100644
--- a/app.py
+++ b/app.py
@@ -11,7 +11,9 @@ from scipy.io import wavfile
import tempfile
import edge_tts
import utils
-import torch
+import matplotlib
+
+matplotlib.use('TkAgg')
from inference.infer_tool import Svc
@@ -67,9 +69,7 @@ def create_fn(model, spk):
input_text = re.sub(r"[\n\,\(\) ]", "", input_text)
voice = tts_voice[gender]
ratestr = "+{:.0%}".format(tts_rate) if tts_rate >= 0 else "{:.0%}".format(tts_rate)
- communicate = edge_tts.Communicate(text=input_text,
- voice=voice,
- rate=ratestr)
+ communicate = edge_tts.Communicate(text=input_text, voice=voice, rate=ratestr)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
temp_path = tmp_file.name
await communicate.save(temp_path)
@@ -100,10 +100,12 @@ if __name__ == '__main__':
models.append((name, cover, create_fn(model, name)))
with gr.Blocks() as app:
gr.Markdown(
- "#
圣安地列斯角色语音生成\n"
- "## 模型作者:B站[Cyber蝈蝈总](https://space.bilibili.com/37706580)\n"
- "#### 罪恶都市人物AI语音请移步[GTAVC](https://huggingface.co/spaces/GroveStreet/GTAVC_SOVITS) \n"
- " 使用此资源创作的作品请标明出处,CJ有两个模型,carl1更清晰,carl2音域广\n"
+ """
+ # 圣安地列斯角色语音生成
+ ## 模型作者:B站[Cyber蝈蝈总](https://space.bilibili.com/37706580)
+ #### 罪恶都市人物AI语音请移步[GTAVC](https://huggingface.co/spaces/GroveStreet/GTAVC_SOVITS)
+ 使用此资源创作的作品请标出处,CJ有两个模型,carl1更清晰,carl2音域广
+ """
)
with gr.Tabs():
for (name, cover, (svc_fn, tts_fn)) in models:
@@ -112,8 +114,8 @@ if __name__ == '__main__':
with gr.Column():
with gr.Row():
vc_transform = gr.Number(label="音高调整 (正负半音,12为1个八度)", value=0)
- f0_predictor = gr.Radio(label="f0预测器 (harvest适合讲话,crepe适合唱歌)",
- choices=['crepe', 'harvest', 'dio', 'pm'], value='crepe')
+ f0_predictor = gr.Radio(label="f0预测器 (推荐rmvpe)",
+ choices=['crepe', 'harvest', 'rmvpe'], value='rmvpe')
auto_f0 = gr.Checkbox(label="自动音高预测 (文本转语音或讲话可选,会导致唱歌跑调)",
value=False)
with gr.Tabs():
@@ -132,13 +134,9 @@ if __name__ == '__main__':
tts_submit = gr.Button("生成", variant="primary")
with gr.Column():
- gr.Markdown(
- ''
- f'
![](file/{cover})
' if cover else ""
- '
'
- )
+ gr.Image(value=os.path.join(os.path.dirname(__file__), cover), height=300, width=300)
vc_output = gr.Audio(label="输出音频")
svc_submit.click(svc_fn, [svc_input, vc_transform, auto_f0, f0_predictor], vc_output)
tts_submit.click(tts_fn, [tts_input, gender, tts_rate, vc_transform, auto_f0, f0_predictor],
vc_output)
- app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
+ app.queue(default_concurrency_limit=1, api_open=args.api).launch(share=args.share)
diff --git a/cluster/__init__.py b/cluster/__init__.py
deleted file mode 100644
index f1b9bde04e73e9218a5d534227caa4c25332f424..0000000000000000000000000000000000000000
--- a/cluster/__init__.py
+++ /dev/null
@@ -1,29 +0,0 @@
-import numpy as np
-import torch
-from sklearn.cluster import KMeans
-
-def get_cluster_model(ckpt_path):
- checkpoint = torch.load(ckpt_path)
- kmeans_dict = {}
- for spk, ckpt in checkpoint.items():
- km = KMeans(ckpt["n_features_in_"])
- km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
- km.__dict__["_n_threads"] = ckpt["_n_threads"]
- km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
- kmeans_dict[spk] = km
- return kmeans_dict
-
-def get_cluster_result(model, x, speaker):
- """
- x: np.array [t, 256]
- return cluster class result
- """
- return model[speaker].predict(x)
-
-def get_cluster_center_result(model, x,speaker):
- """x: np.array [t, 256]"""
- predict = model[speaker].predict(x)
- return model[speaker].cluster_centers_[predict]
-
-def get_center(model, x,speaker):
- return model[speaker].cluster_centers_[x]
diff --git a/cluster/kmeans.py b/cluster/kmeans.py
deleted file mode 100644
index 6111ea45e66a15d41b5b904be6f75affd3c4369f..0000000000000000000000000000000000000000
--- a/cluster/kmeans.py
+++ /dev/null
@@ -1,201 +0,0 @@
-import math,pdb
-import torch,pynvml
-from torch.nn.functional import normalize
-from time import time
-import numpy as np
-# device=torch.device("cuda:0")
-def _kpp(data: torch.Tensor, k: int, sample_size: int = -1):
- """ Picks k points in the data based on the kmeans++ method.
-
- Parameters
- ----------
- data : torch.Tensor
- Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
- data, rank 2 multidimensional data, in which case one
- row is one observation.
- k : int
- Number of samples to generate.
- sample_size : int
- sample data to avoid memory overflow during calculation
-
- Returns
- -------
- init : ndarray
- A 'k' by 'N' containing the initial centroids.
-
- References
- ----------
- .. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
- careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
- on Discrete Algorithms, 2007.
- .. [2] scipy/cluster/vq.py: _kpp
- """
- batch_size=data.shape[0]
- if batch_size>sample_size:
- data = data[torch.randint(0, batch_size,[sample_size], device=data.device)]
- dims = data.shape[1] if len(data.shape) > 1 else 1
- init = torch.zeros((k, dims)).to(data.device)
- r = torch.distributions.uniform.Uniform(0, 1)
- for i in range(k):
- if i == 0:
- init[i, :] = data[torch.randint(data.shape[0], [1])]
- else:
- D2 = torch.cdist(init[:i, :][None, :], data[None, :], p=2)[0].amin(dim=0)
- probs = D2 / torch.sum(D2)
- cumprobs = torch.cumsum(probs, dim=0)
- init[i, :] = data[torch.searchsorted(cumprobs, r.sample([1]).to(data.device))]
- return init
-class KMeansGPU:
- '''
- Kmeans clustering algorithm implemented with PyTorch
-
- Parameters:
- n_clusters: int,
- Number of clusters
-
- max_iter: int, default: 100
- Maximum number of iterations
-
- tol: float, default: 0.0001
- Tolerance
-
- verbose: int, default: 0
- Verbosity
-
- mode: {'euclidean', 'cosine'}, default: 'euclidean'
- Type of distance measure
-
- init_method: {'random', 'point', '++'}
- Type of initialization
-
- minibatch: {None, int}, default: None
- Batch size of MinibatchKmeans algorithm
- if None perform full KMeans algorithm
-
- Attributes:
- centroids: torch.Tensor, shape: [n_clusters, n_features]
- cluster centroids
- '''
- def __init__(self, n_clusters, max_iter=200, tol=1e-4, verbose=0, mode="euclidean",device=torch.device("cuda:0")):
- self.n_clusters = n_clusters
- self.max_iter = max_iter
- self.tol = tol
- self.verbose = verbose
- self.mode = mode
- self.device=device
- pynvml.nvmlInit()
- gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(device.index)
- info = pynvml.nvmlDeviceGetMemoryInfo(gpu_handle)
- self.minibatch=int(33e6/self.n_clusters*info.free/ 1024 / 1024 / 1024)
- print("free_mem/GB:",info.free/ 1024 / 1024 / 1024,"minibatch:",self.minibatch)
-
- @staticmethod
- def cos_sim(a, b):
- """
- Compute cosine similarity of 2 sets of vectors
-
- Parameters:
- a: torch.Tensor, shape: [m, n_features]
-
- b: torch.Tensor, shape: [n, n_features]
- """
- return normalize(a, dim=-1) @ normalize(b, dim=-1).transpose(-2, -1)
-
- @staticmethod
- def euc_sim(a, b):
- """
- Compute euclidean similarity of 2 sets of vectors
- Parameters:
- a: torch.Tensor, shape: [m, n_features]
- b: torch.Tensor, shape: [n, n_features]
- """
- return 2 * a @ b.transpose(-2, -1) -(a**2).sum(dim=1)[..., :, None] - (b**2).sum(dim=1)[..., None, :]
-
- def max_sim(self, a, b):
- """
- Compute maximum similarity (or minimum distance) of each vector
- in a with all of the vectors in b
- Parameters:
- a: torch.Tensor, shape: [m, n_features]
- b: torch.Tensor, shape: [n, n_features]
- """
- if self.mode == 'cosine':
- sim_func = self.cos_sim
- elif self.mode == 'euclidean':
- sim_func = self.euc_sim
- sim = sim_func(a, b)
- max_sim_v, max_sim_i = sim.max(dim=-1)
- return max_sim_v, max_sim_i
-
- def fit_predict(self, X):
- """
- Combination of fit() and predict() methods.
- This is faster than calling fit() and predict() seperately.
- Parameters:
- X: torch.Tensor, shape: [n_samples, n_features]
- centroids: {torch.Tensor, None}, default: None
- if given, centroids will be initialized with given tensor
- if None, centroids will be randomly chosen from X
- Return:
- labels: torch.Tensor, shape: [n_samples]
-
- mini_=33kk/k*remain
- mini=min(mini_,fea_shape)
- offset=log2(k/1000)*1.5
- kpp_all=min(mini_*10/offset,fea_shape)
- kpp_sample=min(mini_/12/offset,fea_shape)
- """
- assert isinstance(X, torch.Tensor), "input must be torch.Tensor"
- assert X.dtype in [torch.half, torch.float, torch.double], "input must be floating point"
- assert X.ndim == 2, "input must be a 2d tensor with shape: [n_samples, n_features] "
- # print("verbose:%s"%self.verbose)
-
- offset = np.power(1.5,np.log(self.n_clusters / 1000))/np.log(2)
- with torch.no_grad():
- batch_size= X.shape[0]
- # print(self.minibatch, int(self.minibatch * 10 / offset), batch_size)
- start_time = time()
- if (self.minibatch*10//offset< batch_size):
- x = X[torch.randint(0, batch_size,[int(self.minibatch*10/offset)])].to(self.device)
- else:
- x = X.to(self.device)
- # print(x.device)
- self.centroids = _kpp(x, self.n_clusters, min(int(self.minibatch/12/offset),batch_size))
- del x
- torch.cuda.empty_cache()
- # self.centroids = self.centroids.to(self.device)
- num_points_in_clusters = torch.ones(self.n_clusters, device=self.device, dtype=X.dtype)#全1
- closest = None#[3098036]#int64
- if(self.minibatch>=batch_size//2 and self.minibatch=batch_size):
- X=X.to(self.device)
- for i in range(self.max_iter):
- iter_time = time()
- if self.minibatch= 2:
- print('iter:', i, 'error:', error.item(), 'time spent:', round(time()-iter_time, 4))
- if error <= self.tol:
- break
-
- if self.verbose >= 1:
- print(f'used {i+1} iterations ({round(time()-start_time, 4)}s) to cluster {batch_size} items into {self.n_clusters} clusters')
- return closest
diff --git a/cluster/train_cluster.py b/cluster/train_cluster.py
deleted file mode 100644
index 8644566388a4107c4442da14c0de090bcd4a91b8..0000000000000000000000000000000000000000
--- a/cluster/train_cluster.py
+++ /dev/null
@@ -1,84 +0,0 @@
-import time,pdb
-import tqdm
-from time import time as ttime
-import os
-from pathlib import Path
-import logging
-import argparse
-from kmeans import KMeansGPU
-import torch
-import numpy as np
-from sklearn.cluster import KMeans,MiniBatchKMeans
-
-logging.basicConfig(level=logging.INFO)
-logger = logging.getLogger(__name__)
-from time import time as ttime
-import pynvml,torch
-
-def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False,use_gpu=False):#gpu_minibatch真拉,虽然库支持但是也不考虑
- logger.info(f"Loading features from {in_dir}")
- features = []
- nums = 0
- for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
- # for name in os.listdir(in_dir):
- # path="%s/%s"%(in_dir,name)
- features.append(torch.load(path,map_location="cpu").squeeze(0).numpy().T)
- # print(features[-1].shape)
- features = np.concatenate(features, axis=0)
- print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
- features = features.astype(np.float32)
- logger.info(f"Clustering features of shape: {features.shape}")
- t = time.time()
- if(use_gpu==False):
- if use_minibatch:
- kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
- else:
- kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
- else:
- kmeans = KMeansGPU(n_clusters=n_clusters, mode='euclidean', verbose=2 if verbose else 0,max_iter=500,tol=1e-2)#
- features=torch.from_numpy(features)#.to(device)
- labels = kmeans.fit_predict(features)#
-
- print(time.time()-t, "s")
-
- x = {
- "n_features_in_": kmeans.n_features_in_ if use_gpu==False else features.shape[1],
- "_n_threads": kmeans._n_threads if use_gpu==False else 4,
- "cluster_centers_": kmeans.cluster_centers_ if use_gpu==False else kmeans.centroids.cpu().numpy(),
- }
- print("end")
-
- return x
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--dataset', type=Path, default="./dataset/44k",
- help='path of training data directory')
- parser.add_argument('--output', type=Path, default="logs/44k",
- help='path of model output directory')
- parser.add_argument('--gpu',action='store_true', default=False ,
- help='to use GPU')
-
-
- args = parser.parse_args()
-
- checkpoint_dir = args.output
- dataset = args.dataset
- use_gpu = args.gpu
- n_clusters = 10000
-
- ckpt = {}
- for spk in os.listdir(dataset):
- if os.path.isdir(dataset/spk):
- print(f"train kmeans for {spk}...")
- in_dir = dataset/spk
- x = train_cluster(in_dir, n_clusters,use_minibatch=False,verbose=False,use_gpu=use_gpu)
- ckpt[spk] = x
-
- checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
- checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
- torch.save(
- ckpt,
- checkpoint_path,
- )
-
diff --git a/configs/config.json b/configs/config.json
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/diffusion/data_loaders.py b/diffusion/data_loaders.py
deleted file mode 100644
index bf18572329019d7a8f1df01799eda207c16dd7ff..0000000000000000000000000000000000000000
--- a/diffusion/data_loaders.py
+++ /dev/null
@@ -1,284 +0,0 @@
-import os
-import random
-import re
-import numpy as np
-import librosa
-import torch
-import random
-from utils import repeat_expand_2d
-from tqdm import tqdm
-from torch.utils.data import Dataset
-
-def traverse_dir(
- root_dir,
- extensions,
- amount=None,
- str_include=None,
- str_exclude=None,
- is_pure=False,
- is_sort=False,
- is_ext=True):
-
- file_list = []
- cnt = 0
- for root, _, files in os.walk(root_dir):
- for file in files:
- if any([file.endswith(f".{ext}") for ext in extensions]):
- # path
- mix_path = os.path.join(root, file)
- pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
-
- # amount
- if (amount is not None) and (cnt == amount):
- if is_sort:
- file_list.sort()
- return file_list
-
- # check string
- if (str_include is not None) and (str_include not in pure_path):
- continue
- if (str_exclude is not None) and (str_exclude in pure_path):
- continue
-
- if not is_ext:
- ext = pure_path.split('.')[-1]
- pure_path = pure_path[:-(len(ext)+1)]
- file_list.append(pure_path)
- cnt += 1
- if is_sort:
- file_list.sort()
- return file_list
-
-
-def get_data_loaders(args, whole_audio=False):
- data_train = AudioDataset(
- filelists = args.data.training_files,
- waveform_sec=args.data.duration,
- hop_size=args.data.block_size,
- sample_rate=args.data.sampling_rate,
- load_all_data=args.train.cache_all_data,
- whole_audio=whole_audio,
- extensions=args.data.extensions,
- n_spk=args.model.n_spk,
- spk=args.spk,
- device=args.train.cache_device,
- fp16=args.train.cache_fp16,
- use_aug=True)
- loader_train = torch.utils.data.DataLoader(
- data_train ,
- batch_size=args.train.batch_size if not whole_audio else 1,
- shuffle=True,
- num_workers=args.train.num_workers if args.train.cache_device=='cpu' else 0,
- persistent_workers=(args.train.num_workers > 0) if args.train.cache_device=='cpu' else False,
- pin_memory=True if args.train.cache_device=='cpu' else False
- )
- data_valid = AudioDataset(
- filelists = args.data.validation_files,
- waveform_sec=args.data.duration,
- hop_size=args.data.block_size,
- sample_rate=args.data.sampling_rate,
- load_all_data=args.train.cache_all_data,
- whole_audio=True,
- spk=args.spk,
- extensions=args.data.extensions,
- n_spk=args.model.n_spk)
- loader_valid = torch.utils.data.DataLoader(
- data_valid,
- batch_size=1,
- shuffle=False,
- num_workers=0,
- pin_memory=True
- )
- return loader_train, loader_valid
-
-
-class AudioDataset(Dataset):
- def __init__(
- self,
- filelists,
- waveform_sec,
- hop_size,
- sample_rate,
- spk,
- load_all_data=True,
- whole_audio=False,
- extensions=['wav'],
- n_spk=1,
- device='cpu',
- fp16=False,
- use_aug=False,
- ):
- super().__init__()
-
- self.waveform_sec = waveform_sec
- self.sample_rate = sample_rate
- self.hop_size = hop_size
- self.filelists = filelists
- self.whole_audio = whole_audio
- self.use_aug = use_aug
- self.data_buffer={}
- self.pitch_aug_dict = {}
- # np.load(os.path.join(self.path_root, 'pitch_aug_dict.npy'), allow_pickle=True).item()
- if load_all_data:
- print('Load all the data filelists:', filelists)
- else:
- print('Load the f0, volume data filelists:', filelists)
- with open(filelists,"r") as f:
- self.paths = f.read().splitlines()
- for name_ext in tqdm(self.paths, total=len(self.paths)):
- name = os.path.splitext(name_ext)[0]
- path_audio = name_ext
- duration = librosa.get_duration(filename = path_audio, sr = self.sample_rate)
-
- path_f0 = name_ext + ".f0.npy"
- f0,_ = np.load(path_f0,allow_pickle=True)
- f0 = torch.from_numpy(np.array(f0,dtype=float)).float().unsqueeze(-1).to(device)
-
- path_volume = name_ext + ".vol.npy"
- volume = np.load(path_volume)
- volume = torch.from_numpy(volume).float().unsqueeze(-1).to(device)
-
- path_augvol = name_ext + ".aug_vol.npy"
- aug_vol = np.load(path_augvol)
- aug_vol = torch.from_numpy(aug_vol).float().unsqueeze(-1).to(device)
-
- if n_spk is not None and n_spk > 1:
- spk_name = name_ext.split("/")[-2]
- spk_id = spk[spk_name] if spk_name in spk else 0
- if spk_id < 0 or spk_id >= n_spk:
- raise ValueError(' [x] Muiti-speaker traing error : spk_id must be a positive integer from 0 to n_spk-1 ')
- else:
- spk_id = 0
- spk_id = torch.LongTensor(np.array([spk_id])).to(device)
-
- if load_all_data:
- '''
- audio, sr = librosa.load(path_audio, sr=self.sample_rate)
- if len(audio.shape) > 1:
- audio = librosa.to_mono(audio)
- audio = torch.from_numpy(audio).to(device)
- '''
- path_mel = name_ext + ".mel.npy"
- mel = np.load(path_mel)
- mel = torch.from_numpy(mel).to(device)
-
- path_augmel = name_ext + ".aug_mel.npy"
- aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
- aug_mel = np.array(aug_mel,dtype=float)
- aug_mel = torch.from_numpy(aug_mel).to(device)
- self.pitch_aug_dict[name_ext] = keyshift
-
- path_units = name_ext + ".soft.pt"
- units = torch.load(path_units).to(device)
- units = units[0]
- units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
-
- if fp16:
- mel = mel.half()
- aug_mel = aug_mel.half()
- units = units.half()
-
- self.data_buffer[name_ext] = {
- 'duration': duration,
- 'mel': mel,
- 'aug_mel': aug_mel,
- 'units': units,
- 'f0': f0,
- 'volume': volume,
- 'aug_vol': aug_vol,
- 'spk_id': spk_id
- }
- else:
- path_augmel = name_ext + ".aug_mel.npy"
- aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
- self.pitch_aug_dict[name_ext] = keyshift
- self.data_buffer[name_ext] = {
- 'duration': duration,
- 'f0': f0,
- 'volume': volume,
- 'aug_vol': aug_vol,
- 'spk_id': spk_id
- }
-
-
- def __getitem__(self, file_idx):
- name_ext = self.paths[file_idx]
- data_buffer = self.data_buffer[name_ext]
- # check duration. if too short, then skip
- if data_buffer['duration'] < (self.waveform_sec + 0.1):
- return self.__getitem__( (file_idx + 1) % len(self.paths))
-
- # get item
- return self.get_data(name_ext, data_buffer)
-
- def get_data(self, name_ext, data_buffer):
- name = os.path.splitext(name_ext)[0]
- frame_resolution = self.hop_size / self.sample_rate
- duration = data_buffer['duration']
- waveform_sec = duration if self.whole_audio else self.waveform_sec
-
- # load audio
- idx_from = 0 if self.whole_audio else random.uniform(0, duration - waveform_sec - 0.1)
- start_frame = int(idx_from / frame_resolution)
- units_frame_len = int(waveform_sec / frame_resolution)
- aug_flag = random.choice([True, False]) and self.use_aug
- '''
- audio = data_buffer.get('audio')
- if audio is None:
- path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
- audio, sr = librosa.load(
- path_audio,
- sr = self.sample_rate,
- offset = start_frame * frame_resolution,
- duration = waveform_sec)
- if len(audio.shape) > 1:
- audio = librosa.to_mono(audio)
- # clip audio into N seconds
- audio = audio[ : audio.shape[-1] // self.hop_size * self.hop_size]
- audio = torch.from_numpy(audio).float()
- else:
- audio = audio[start_frame * self.hop_size : (start_frame + units_frame_len) * self.hop_size]
- '''
- # load mel
- mel_key = 'aug_mel' if aug_flag else 'mel'
- mel = data_buffer.get(mel_key)
- if mel is None:
- mel = name_ext + ".mel.npy"
- mel = np.load(mel)
- mel = mel[start_frame : start_frame + units_frame_len]
- mel = torch.from_numpy(mel).float()
- else:
- mel = mel[start_frame : start_frame + units_frame_len]
-
- # load f0
- f0 = data_buffer.get('f0')
- aug_shift = 0
- if aug_flag:
- aug_shift = self.pitch_aug_dict[name_ext]
- f0_frames = 2 ** (aug_shift / 12) * f0[start_frame : start_frame + units_frame_len]
-
- # load units
- units = data_buffer.get('units')
- if units is None:
- path_units = name_ext + ".soft.pt"
- units = torch.load(path_units)
- units = units[0]
- units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
-
- units = units[start_frame : start_frame + units_frame_len]
-
- # load volume
- vol_key = 'aug_vol' if aug_flag else 'volume'
- volume = data_buffer.get(vol_key)
- volume_frames = volume[start_frame : start_frame + units_frame_len]
-
- # load spk_id
- spk_id = data_buffer.get('spk_id')
-
- # load shift
- aug_shift = torch.from_numpy(np.array([[aug_shift]])).float()
-
- return dict(mel=mel, f0=f0_frames, volume=volume_frames, units=units, spk_id=spk_id, aug_shift=aug_shift, name=name, name_ext=name_ext)
-
- def __len__(self):
- return len(self.paths)
\ No newline at end of file
diff --git a/diffusion/diffusion.py b/diffusion/diffusion.py
deleted file mode 100644
index decc1d31503e93e6611b02ced7b9c6f00b95db58..0000000000000000000000000000000000000000
--- a/diffusion/diffusion.py
+++ /dev/null
@@ -1,317 +0,0 @@
-from collections import deque
-from functools import partial
-from inspect import isfunction
-import torch.nn.functional as F
-import librosa.sequence
-import numpy as np
-import torch
-from torch import nn
-from tqdm import tqdm
-
-
-def exists(x):
- return x is not None
-
-
-def default(val, d):
- if exists(val):
- return val
- return d() if isfunction(d) else d
-
-
-def extract(a, t, x_shape):
- b, *_ = t.shape
- out = a.gather(-1, t)
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
-
-
-def noise_like(shape, device, repeat=False):
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
- noise = lambda: torch.randn(shape, device=device)
- return repeat_noise() if repeat else noise()
-
-
-def linear_beta_schedule(timesteps, max_beta=0.02):
- """
- linear schedule
- """
- betas = np.linspace(1e-4, max_beta, timesteps)
- return betas
-
-
-def cosine_beta_schedule(timesteps, s=0.008):
- """
- cosine schedule
- as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
- """
- steps = timesteps + 1
- x = np.linspace(0, steps, steps)
- alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
- alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
- betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
- return np.clip(betas, a_min=0, a_max=0.999)
-
-
-beta_schedule = {
- "cosine": cosine_beta_schedule,
- "linear": linear_beta_schedule,
-}
-
-
-class GaussianDiffusion(nn.Module):
- def __init__(self,
- denoise_fn,
- out_dims=128,
- timesteps=1000,
- k_step=1000,
- max_beta=0.02,
- spec_min=-12,
- spec_max=2):
- super().__init__()
- self.denoise_fn = denoise_fn
- self.out_dims = out_dims
- betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
-
- alphas = 1. - betas
- alphas_cumprod = np.cumprod(alphas, axis=0)
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
-
- timesteps, = betas.shape
- self.num_timesteps = int(timesteps)
- self.k_step = k_step
-
- self.noise_list = deque(maxlen=4)
-
- to_torch = partial(torch.tensor, dtype=torch.float32)
-
- self.register_buffer('betas', to_torch(betas))
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
-
- # calculations for diffusion q(x_t | x_{t-1}) and others
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
-
- # calculations for posterior q(x_{t-1} | x_t, x_0)
- posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
- self.register_buffer('posterior_mean_coef1', to_torch(
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
- self.register_buffer('posterior_mean_coef2', to_torch(
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
-
- self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
- self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
-
- def q_mean_variance(self, x_start, t):
- mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
- variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
- log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
- return mean, variance, log_variance
-
- def predict_start_from_noise(self, x_t, t, noise):
- return (
- extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
- extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
- )
-
- def q_posterior(self, x_start, x_t, t):
- posterior_mean = (
- extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
- extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
- )
- posterior_variance = extract(self.posterior_variance, t, x_t.shape)
- posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
-
- def p_mean_variance(self, x, t, cond):
- noise_pred = self.denoise_fn(x, t, cond=cond)
- x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
-
- x_recon.clamp_(-1., 1.)
-
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
- return model_mean, posterior_variance, posterior_log_variance
-
- @torch.no_grad()
- def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
- b, *_, device = *x.shape, x.device
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
- noise = noise_like(x.shape, device, repeat_noise)
- # no noise when t == 0
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
-
- @torch.no_grad()
- def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
- """
- Use the PLMS method from
- [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
- """
-
- def get_x_pred(x, noise_t, t):
- a_t = extract(self.alphas_cumprod, t, x.shape)
- a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
- a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
-
- x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
- a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
- x_pred = x + x_delta
-
- return x_pred
-
- noise_list = self.noise_list
- noise_pred = self.denoise_fn(x, t, cond=cond)
-
- if len(noise_list) == 0:
- x_pred = get_x_pred(x, noise_pred, t)
- noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
- noise_pred_prime = (noise_pred + noise_pred_prev) / 2
- elif len(noise_list) == 1:
- noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
- elif len(noise_list) == 2:
- noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
- else:
- noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
-
- x_prev = get_x_pred(x, noise_pred_prime, t)
- noise_list.append(noise_pred)
-
- return x_prev
-
- def q_sample(self, x_start, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x_start))
- return (
- extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
- extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
- )
-
- def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
- noise = default(noise, lambda: torch.randn_like(x_start))
-
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
- x_recon = self.denoise_fn(x_noisy, t, cond)
-
- if loss_type == 'l1':
- loss = (noise - x_recon).abs().mean()
- elif loss_type == 'l2':
- loss = F.mse_loss(noise, x_recon)
- else:
- raise NotImplementedError()
-
- return loss
-
- def forward(self,
- condition,
- gt_spec=None,
- infer=True,
- infer_speedup=10,
- method='dpm-solver',
- k_step=300,
- use_tqdm=True):
- """
- conditioning diffusion, use fastspeech2 encoder output as the condition
- """
- cond = condition.transpose(1, 2)
- b, device = condition.shape[0], condition.device
-
- if not infer:
- spec = self.norm_spec(gt_spec)
- t = torch.randint(0, self.k_step, (b,), device=device).long()
- norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
- return self.p_losses(norm_spec, t, cond=cond)
- else:
- shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
-
- if gt_spec is None:
- t = self.k_step
- x = torch.randn(shape, device=device)
- else:
- t = k_step
- norm_spec = self.norm_spec(gt_spec)
- norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
- x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
-
- if method is not None and infer_speedup > 1:
- if method == 'dpm-solver':
- from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
- # 1. Define the noise schedule.
- noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
-
- # 2. Convert your discrete-time `model` to the continuous-time
- # noise prediction model. Here is an example for a diffusion model
- # `model` with the noise prediction type ("noise") .
- def my_wrapper(fn):
- def wrapped(x, t, **kwargs):
- ret = fn(x, t, **kwargs)
- if use_tqdm:
- self.bar.update(1)
- return ret
-
- return wrapped
-
- model_fn = model_wrapper(
- my_wrapper(self.denoise_fn),
- noise_schedule,
- model_type="noise", # or "x_start" or "v" or "score"
- model_kwargs={"cond": cond}
- )
-
- # 3. Define dpm-solver and sample by singlestep DPM-Solver.
- # (We recommend singlestep DPM-Solver for unconditional sampling)
- # You can adjust the `steps` to balance the computation
- # costs and the sample quality.
- dpm_solver = DPM_Solver(model_fn, noise_schedule)
-
- steps = t // infer_speedup
- if use_tqdm:
- self.bar = tqdm(desc="sample time step", total=steps)
- x = dpm_solver.sample(
- x,
- steps=steps,
- order=3,
- skip_type="time_uniform",
- method="singlestep",
- )
- if use_tqdm:
- self.bar.close()
- elif method == 'pndm':
- self.noise_list = deque(maxlen=4)
- if use_tqdm:
- for i in tqdm(
- reversed(range(0, t, infer_speedup)), desc='sample time step',
- total=t // infer_speedup,
- ):
- x = self.p_sample_plms(
- x, torch.full((b,), i, device=device, dtype=torch.long),
- infer_speedup, cond=cond
- )
- else:
- for i in reversed(range(0, t, infer_speedup)):
- x = self.p_sample_plms(
- x, torch.full((b,), i, device=device, dtype=torch.long),
- infer_speedup, cond=cond
- )
- else:
- raise NotImplementedError(method)
- else:
- if use_tqdm:
- for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
- else:
- for i in reversed(range(0, t)):
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
- x = x.squeeze(1).transpose(1, 2) # [B, T, M]
- return self.denorm_spec(x)
-
- def norm_spec(self, x):
- return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
-
- def denorm_spec(self, x):
- return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
diff --git a/diffusion/diffusion_onnx.py b/diffusion/diffusion_onnx.py
deleted file mode 100644
index 1c1e80321de162b5233801efa3423739f7f92bdc..0000000000000000000000000000000000000000
--- a/diffusion/diffusion_onnx.py
+++ /dev/null
@@ -1,612 +0,0 @@
-from collections import deque
-from functools import partial
-from inspect import isfunction
-import torch.nn.functional as F
-import librosa.sequence
-import numpy as np
-from torch.nn import Conv1d
-from torch.nn import Mish
-import torch
-from torch import nn
-from tqdm import tqdm
-import math
-
-
-def exists(x):
- return x is not None
-
-
-def default(val, d):
- if exists(val):
- return val
- return d() if isfunction(d) else d
-
-
-def extract(a, t):
- return a[t].reshape((1, 1, 1, 1))
-
-
-def noise_like(shape, device, repeat=False):
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
- noise = lambda: torch.randn(shape, device=device)
- return repeat_noise() if repeat else noise()
-
-
-def linear_beta_schedule(timesteps, max_beta=0.02):
- """
- linear schedule
- """
- betas = np.linspace(1e-4, max_beta, timesteps)
- return betas
-
-
-def cosine_beta_schedule(timesteps, s=0.008):
- """
- cosine schedule
- as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
- """
- steps = timesteps + 1
- x = np.linspace(0, steps, steps)
- alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
- alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
- betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
- return np.clip(betas, a_min=0, a_max=0.999)
-
-
-beta_schedule = {
- "cosine": cosine_beta_schedule,
- "linear": linear_beta_schedule,
-}
-
-
-def extract_1(a, t):
- return a[t].reshape((1, 1, 1, 1))
-
-
-def predict_stage0(noise_pred, noise_pred_prev):
- return (noise_pred + noise_pred_prev) / 2
-
-
-def predict_stage1(noise_pred, noise_list):
- return (noise_pred * 3
- - noise_list[-1]) / 2
-
-
-def predict_stage2(noise_pred, noise_list):
- return (noise_pred * 23
- - noise_list[-1] * 16
- + noise_list[-2] * 5) / 12
-
-
-def predict_stage3(noise_pred, noise_list):
- return (noise_pred * 55
- - noise_list[-1] * 59
- + noise_list[-2] * 37
- - noise_list[-3] * 9) / 24
-
-
-class SinusoidalPosEmb(nn.Module):
- def __init__(self, dim):
- super().__init__()
- self.dim = dim
- self.half_dim = dim // 2
- self.emb = 9.21034037 / (self.half_dim - 1)
- self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
- self.emb = self.emb.cpu()
-
- def forward(self, x):
- emb = self.emb * x
- emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
- return emb
-
-
-class ResidualBlock(nn.Module):
- def __init__(self, encoder_hidden, residual_channels, dilation):
- super().__init__()
- self.residual_channels = residual_channels
- self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
- self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
- self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
- self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
-
- def forward(self, x, conditioner, diffusion_step):
- diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
- conditioner = self.conditioner_projection(conditioner)
- y = x + diffusion_step
- y = self.dilated_conv(y) + conditioner
-
- gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
-
- y = torch.sigmoid(gate) * torch.tanh(filter_1)
- y = self.output_projection(y)
-
- residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
-
- return (x + residual) / 1.41421356, skip
-
-
-class DiffNet(nn.Module):
- def __init__(self, in_dims, n_layers, n_chans, n_hidden):
- super().__init__()
- self.encoder_hidden = n_hidden
- self.residual_layers = n_layers
- self.residual_channels = n_chans
- self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
- self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
- dim = self.residual_channels
- self.mlp = nn.Sequential(
- nn.Linear(dim, dim * 4),
- Mish(),
- nn.Linear(dim * 4, dim)
- )
- self.residual_layers = nn.ModuleList([
- ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
- for i in range(self.residual_layers)
- ])
- self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
- self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
- nn.init.zeros_(self.output_projection.weight)
-
- def forward(self, spec, diffusion_step, cond):
- x = spec.squeeze(0)
- x = self.input_projection(x) # x [B, residual_channel, T]
- x = F.relu(x)
- # skip = torch.randn_like(x)
- diffusion_step = diffusion_step.float()
- diffusion_step = self.diffusion_embedding(diffusion_step)
- diffusion_step = self.mlp(diffusion_step)
-
- x, skip = self.residual_layers[0](x, cond, diffusion_step)
- # noinspection PyTypeChecker
- for layer in self.residual_layers[1:]:
- x, skip_connection = layer.forward(x, cond, diffusion_step)
- skip = skip + skip_connection
- x = skip / math.sqrt(len(self.residual_layers))
- x = self.skip_projection(x)
- x = F.relu(x)
- x = self.output_projection(x) # [B, 80, T]
- return x.unsqueeze(1)
-
-
-class AfterDiffusion(nn.Module):
- def __init__(self, spec_max, spec_min, v_type='a'):
- super().__init__()
- self.spec_max = spec_max
- self.spec_min = spec_min
- self.type = v_type
-
- def forward(self, x):
- x = x.squeeze(1).permute(0, 2, 1)
- mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
- if self.type == 'nsf-hifigan-log10':
- mel_out = mel_out * 0.434294
- return mel_out.transpose(2, 1)
-
-
-class Pred(nn.Module):
- def __init__(self, alphas_cumprod):
- super().__init__()
- self.alphas_cumprod = alphas_cumprod
-
- def forward(self, x_1, noise_t, t_1, t_prev):
- a_t = extract(self.alphas_cumprod, t_1).cpu()
- a_prev = extract(self.alphas_cumprod, t_prev).cpu()
- a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
- x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
- a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
- x_pred = x_1 + x_delta.cpu()
-
- return x_pred
-
-
-class GaussianDiffusion(nn.Module):
- def __init__(self,
- out_dims=128,
- n_layers=20,
- n_chans=384,
- n_hidden=256,
- timesteps=1000,
- k_step=1000,
- max_beta=0.02,
- spec_min=-12,
- spec_max=2):
- super().__init__()
- self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
- self.out_dims = out_dims
- self.mel_bins = out_dims
- self.n_hidden = n_hidden
- betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
-
- alphas = 1. - betas
- alphas_cumprod = np.cumprod(alphas, axis=0)
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
- timesteps, = betas.shape
- self.num_timesteps = int(timesteps)
- self.k_step = k_step
-
- self.noise_list = deque(maxlen=4)
-
- to_torch = partial(torch.tensor, dtype=torch.float32)
-
- self.register_buffer('betas', to_torch(betas))
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
-
- # calculations for diffusion q(x_t | x_{t-1}) and others
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
-
- # calculations for posterior q(x_{t-1} | x_t, x_0)
- posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
- self.register_buffer('posterior_mean_coef1', to_torch(
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
- self.register_buffer('posterior_mean_coef2', to_torch(
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
-
- self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
- self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
- self.ad = AfterDiffusion(self.spec_max, self.spec_min)
- self.xp = Pred(self.alphas_cumprod)
-
- def q_mean_variance(self, x_start, t):
- mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
- variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
- log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
- return mean, variance, log_variance
-
- def predict_start_from_noise(self, x_t, t, noise):
- return (
- extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
- extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
- )
-
- def q_posterior(self, x_start, x_t, t):
- posterior_mean = (
- extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
- extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
- )
- posterior_variance = extract(self.posterior_variance, t, x_t.shape)
- posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
-
- def p_mean_variance(self, x, t, cond):
- noise_pred = self.denoise_fn(x, t, cond=cond)
- x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
-
- x_recon.clamp_(-1., 1.)
-
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
- return model_mean, posterior_variance, posterior_log_variance
-
- @torch.no_grad()
- def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
- b, *_, device = *x.shape, x.device
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
- noise = noise_like(x.shape, device, repeat_noise)
- # no noise when t == 0
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
-
- @torch.no_grad()
- def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
- """
- Use the PLMS method from
- [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
- """
-
- def get_x_pred(x, noise_t, t):
- a_t = extract(self.alphas_cumprod, t)
- a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
- a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
-
- x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
- a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
- x_pred = x + x_delta
-
- return x_pred
-
- noise_list = self.noise_list
- noise_pred = self.denoise_fn(x, t, cond=cond)
-
- if len(noise_list) == 0:
- x_pred = get_x_pred(x, noise_pred, t)
- noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
- noise_pred_prime = (noise_pred + noise_pred_prev) / 2
- elif len(noise_list) == 1:
- noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
- elif len(noise_list) == 2:
- noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
- else:
- noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
-
- x_prev = get_x_pred(x, noise_pred_prime, t)
- noise_list.append(noise_pred)
-
- return x_prev
-
- def q_sample(self, x_start, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x_start))
- return (
- extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
- extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
- )
-
- def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
- noise = default(noise, lambda: torch.randn_like(x_start))
-
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
- x_recon = self.denoise_fn(x_noisy, t, cond)
-
- if loss_type == 'l1':
- loss = (noise - x_recon).abs().mean()
- elif loss_type == 'l2':
- loss = F.mse_loss(noise, x_recon)
- else:
- raise NotImplementedError()
-
- return loss
-
- def org_forward(self,
- condition,
- init_noise=None,
- gt_spec=None,
- infer=True,
- infer_speedup=100,
- method='pndm',
- k_step=1000,
- use_tqdm=True):
- """
- conditioning diffusion, use fastspeech2 encoder output as the condition
- """
- cond = condition
- b, device = condition.shape[0], condition.device
- if not infer:
- spec = self.norm_spec(gt_spec)
- t = torch.randint(0, self.k_step, (b,), device=device).long()
- norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
- return self.p_losses(norm_spec, t, cond=cond)
- else:
- shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
-
- if gt_spec is None:
- t = self.k_step
- if init_noise is None:
- x = torch.randn(shape, device=device)
- else:
- x = init_noise
- else:
- t = k_step
- norm_spec = self.norm_spec(gt_spec)
- norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
- x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
-
- if method is not None and infer_speedup > 1:
- if method == 'dpm-solver':
- from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
- # 1. Define the noise schedule.
- noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
-
- # 2. Convert your discrete-time `model` to the continuous-time
- # noise prediction model. Here is an example for a diffusion model
- # `model` with the noise prediction type ("noise") .
- def my_wrapper(fn):
- def wrapped(x, t, **kwargs):
- ret = fn(x, t, **kwargs)
- if use_tqdm:
- self.bar.update(1)
- return ret
-
- return wrapped
-
- model_fn = model_wrapper(
- my_wrapper(self.denoise_fn),
- noise_schedule,
- model_type="noise", # or "x_start" or "v" or "score"
- model_kwargs={"cond": cond}
- )
-
- # 3. Define dpm-solver and sample by singlestep DPM-Solver.
- # (We recommend singlestep DPM-Solver for unconditional sampling)
- # You can adjust the `steps` to balance the computation
- # costs and the sample quality.
- dpm_solver = DPM_Solver(model_fn, noise_schedule)
-
- steps = t // infer_speedup
- if use_tqdm:
- self.bar = tqdm(desc="sample time step", total=steps)
- x = dpm_solver.sample(
- x,
- steps=steps,
- order=3,
- skip_type="time_uniform",
- method="singlestep",
- )
- if use_tqdm:
- self.bar.close()
- elif method == 'pndm':
- self.noise_list = deque(maxlen=4)
- if use_tqdm:
- for i in tqdm(
- reversed(range(0, t, infer_speedup)), desc='sample time step',
- total=t // infer_speedup,
- ):
- x = self.p_sample_plms(
- x, torch.full((b,), i, device=device, dtype=torch.long),
- infer_speedup, cond=cond
- )
- else:
- for i in reversed(range(0, t, infer_speedup)):
- x = self.p_sample_plms(
- x, torch.full((b,), i, device=device, dtype=torch.long),
- infer_speedup, cond=cond
- )
- else:
- raise NotImplementedError(method)
- else:
- if use_tqdm:
- for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
- else:
- for i in reversed(range(0, t)):
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
- x = x.squeeze(1).transpose(1, 2) # [B, T, M]
- return self.denorm_spec(x).transpose(2, 1)
-
- def norm_spec(self, x):
- return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
-
- def denorm_spec(self, x):
- return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
-
- def get_x_pred(self, x_1, noise_t, t_1, t_prev):
- a_t = extract(self.alphas_cumprod, t_1)
- a_prev = extract(self.alphas_cumprod, t_prev)
- a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
- x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
- a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
- x_pred = x_1 + x_delta
- return x_pred
-
- def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
- cond = torch.randn([1, self.n_hidden, 10]).cpu()
- if init_noise is None:
- x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
- else:
- x = init_noise
- pndms = 100
-
- org_y_x = self.org_forward(cond, init_noise=x)
-
- device = cond.device
- n_frames = cond.shape[2]
- step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
- plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
- noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
-
- ot = step_range[0]
- ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
- if export_denoise:
- torch.onnx.export(
- self.denoise_fn,
- (x.cpu(), ot_1.cpu(), cond.cpu()),
- f"{project_name}_denoise.onnx",
- input_names=["noise", "time", "condition"],
- output_names=["noise_pred"],
- dynamic_axes={
- "noise": [3],
- "condition": [2]
- },
- opset_version=16
- )
-
- for t in step_range:
- t_1 = torch.full((1,), t, device=device, dtype=torch.long)
- noise_pred = self.denoise_fn(x, t_1, cond)
- t_prev = t_1 - pndms
- t_prev = t_prev * (t_prev > 0)
- if plms_noise_stage == 0:
- if export_pred:
- torch.onnx.export(
- self.xp,
- (x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
- f"{project_name}_pred.onnx",
- input_names=["noise", "noise_pred", "time", "time_prev"],
- output_names=["noise_pred_o"],
- dynamic_axes={
- "noise": [3],
- "noise_pred": [3]
- },
- opset_version=16
- )
-
- x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
- noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
- noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
-
- elif plms_noise_stage == 1:
- noise_pred_prime = predict_stage1(noise_pred, noise_list)
-
- elif plms_noise_stage == 2:
- noise_pred_prime = predict_stage2(noise_pred, noise_list)
-
- else:
- noise_pred_prime = predict_stage3(noise_pred, noise_list)
-
- noise_pred = noise_pred.unsqueeze(0)
-
- if plms_noise_stage < 3:
- noise_list = torch.cat((noise_list, noise_pred), dim=0)
- plms_noise_stage = plms_noise_stage + 1
-
- else:
- noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
-
- x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
- if export_after:
- torch.onnx.export(
- self.ad,
- x.cpu(),
- f"{project_name}_after.onnx",
- input_names=["x"],
- output_names=["mel_out"],
- dynamic_axes={
- "x": [3]
- },
- opset_version=16
- )
- x = self.ad(x)
-
- print((x == org_y_x).all())
- return x
-
- def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
- cond = condition
- x = init_noise
-
- device = cond.device
- n_frames = cond.shape[2]
- step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
- plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
- noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
-
- ot = step_range[0]
- ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
-
- for t in step_range:
- t_1 = torch.full((1,), t, device=device, dtype=torch.long)
- noise_pred = self.denoise_fn(x, t_1, cond)
- t_prev = t_1 - pndms
- t_prev = t_prev * (t_prev > 0)
- if plms_noise_stage == 0:
- x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
- noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
- noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
-
- elif plms_noise_stage == 1:
- noise_pred_prime = predict_stage1(noise_pred, noise_list)
-
- elif plms_noise_stage == 2:
- noise_pred_prime = predict_stage2(noise_pred, noise_list)
-
- else:
- noise_pred_prime = predict_stage3(noise_pred, noise_list)
-
- noise_pred = noise_pred.unsqueeze(0)
-
- if plms_noise_stage < 3:
- noise_list = torch.cat((noise_list, noise_pred), dim=0)
- plms_noise_stage = plms_noise_stage + 1
-
- else:
- noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
-
- x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
- x = self.ad(x)
- return x
diff --git a/diffusion/dpm_solver_pytorch.py b/diffusion/dpm_solver_pytorch.py
deleted file mode 100644
index dee5e280661b61e0a99038ce0bd240db51344ead..0000000000000000000000000000000000000000
--- a/diffusion/dpm_solver_pytorch.py
+++ /dev/null
@@ -1,1201 +0,0 @@
-import math
-
-import torch
-
-
-class NoiseScheduleVP:
- def __init__(
- self,
- schedule='discrete',
- betas=None,
- alphas_cumprod=None,
- continuous_beta_0=0.1,
- continuous_beta_1=20.,
- ):
- """Create a wrapper class for the forward SDE (VP type).
-
- ***
- Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
- We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
- ***
-
- The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
- We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
- Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
-
- log_alpha_t = self.marginal_log_mean_coeff(t)
- sigma_t = self.marginal_std(t)
- lambda_t = self.marginal_lambda(t)
-
- Moreover, as lambda(t) is an invertible function, we also support its inverse function:
-
- t = self.inverse_lambda(lambda_t)
-
- ===============================================================
-
- We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
-
- 1. For discrete-time DPMs:
-
- For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
- t_i = (i + 1) / N
- e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
- We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
-
- Args:
- betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
- alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
-
- Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
-
- **Important**: Please pay special attention for the args for `alphas_cumprod`:
- The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
- q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
- Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
- alpha_{t_n} = \sqrt{\hat{alpha_n}},
- and
- log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
-
-
- 2. For continuous-time DPMs:
-
- We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
- schedule are the default settings in DDPM and improved-DDPM:
-
- Args:
- beta_min: A `float` number. The smallest beta for the linear schedule.
- beta_max: A `float` number. The largest beta for the linear schedule.
- cosine_s: A `float` number. The hyperparameter in the cosine schedule.
- cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
- T: A `float` number. The ending time of the forward process.
-
- ===============================================================
-
- Args:
- schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
- 'linear' or 'cosine' for continuous-time DPMs.
- Returns:
- A wrapper object of the forward SDE (VP type).
-
- ===============================================================
-
- Example:
-
- # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
- >>> ns = NoiseScheduleVP('discrete', betas=betas)
-
- # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
- >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
-
- # For continuous-time DPMs (VPSDE), linear schedule:
- >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
-
- """
-
- if schedule not in ['discrete', 'linear', 'cosine']:
- raise ValueError(
- "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
- schedule))
-
- self.schedule = schedule
- if schedule == 'discrete':
- if betas is not None:
- log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
- else:
- assert alphas_cumprod is not None
- log_alphas = 0.5 * torch.log(alphas_cumprod)
- self.total_N = len(log_alphas)
- self.T = 1.
- self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
- self.log_alpha_array = log_alphas.reshape((1, -1,))
- else:
- self.total_N = 1000
- self.beta_0 = continuous_beta_0
- self.beta_1 = continuous_beta_1
- self.cosine_s = 0.008
- self.cosine_beta_max = 999.
- self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
- 1. + self.cosine_s) / math.pi - self.cosine_s
- self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
- self.schedule = schedule
- if schedule == 'cosine':
- # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
- # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
- self.T = 0.9946
- else:
- self.T = 1.
-
- def marginal_log_mean_coeff(self, t):
- """
- Compute log(alpha_t) of a given continuous-time label t in [0, T].
- """
- if self.schedule == 'discrete':
- return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
- self.log_alpha_array.to(t.device)).reshape((-1))
- elif self.schedule == 'linear':
- return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
- elif self.schedule == 'cosine':
- log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
- log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
- return log_alpha_t
-
- def marginal_alpha(self, t):
- """
- Compute alpha_t of a given continuous-time label t in [0, T].
- """
- return torch.exp(self.marginal_log_mean_coeff(t))
-
- def marginal_std(self, t):
- """
- Compute sigma_t of a given continuous-time label t in [0, T].
- """
- return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
-
- def marginal_lambda(self, t):
- """
- Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
- """
- log_mean_coeff = self.marginal_log_mean_coeff(t)
- log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
- return log_mean_coeff - log_std
-
- def inverse_lambda(self, lamb):
- """
- Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
- """
- if self.schedule == 'linear':
- tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
- Delta = self.beta_0 ** 2 + tmp
- return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
- elif self.schedule == 'discrete':
- log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
- t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
- torch.flip(self.t_array.to(lamb.device), [1]))
- return t.reshape((-1,))
- else:
- log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
- t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
- 1. + self.cosine_s) / math.pi - self.cosine_s
- t = t_fn(log_alpha)
- return t
-
-
-def model_wrapper(
- model,
- noise_schedule,
- model_type="noise",
- model_kwargs={},
- guidance_type="uncond",
- condition=None,
- unconditional_condition=None,
- guidance_scale=1.,
- classifier_fn=None,
- classifier_kwargs={},
-):
- """Create a wrapper function for the noise prediction model.
-
- DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
- firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
-
- We support four types of the diffusion model by setting `model_type`:
-
- 1. "noise": noise prediction model. (Trained by predicting noise).
-
- 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
-
- 3. "v": velocity prediction model. (Trained by predicting the velocity).
- The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
-
- [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
- arXiv preprint arXiv:2202.00512 (2022).
- [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
- arXiv preprint arXiv:2210.02303 (2022).
-
- 4. "score": marginal score function. (Trained by denoising score matching).
- Note that the score function and the noise prediction model follows a simple relationship:
- ```
- noise(x_t, t) = -sigma_t * score(x_t, t)
- ```
-
- We support three types of guided sampling by DPMs by setting `guidance_type`:
- 1. "uncond": unconditional sampling by DPMs.
- The input `model` has the following format:
- ``
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
- ``
-
- 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
- The input `model` has the following format:
- ``
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
- ``
-
- The input `classifier_fn` has the following format:
- ``
- classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
- ``
-
- [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
- in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
-
- 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
- The input `model` has the following format:
- ``
- model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
- ``
- And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
-
- [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
- arXiv preprint arXiv:2207.12598 (2022).
-
-
- The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
- or continuous-time labels (i.e. epsilon to T).
-
- We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
- ``
- def model_fn(x, t_continuous) -> noise:
- t_input = get_model_input_time(t_continuous)
- return noise_pred(model, x, t_input, **model_kwargs)
- ``
- where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
-
- ===============================================================
-
- Args:
- model: A diffusion model with the corresponding format described above.
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
- model_type: A `str`. The parameterization type of the diffusion model.
- "noise" or "x_start" or "v" or "score".
- model_kwargs: A `dict`. A dict for the other inputs of the model function.
- guidance_type: A `str`. The type of the guidance for sampling.
- "uncond" or "classifier" or "classifier-free".
- condition: A pytorch tensor. The condition for the guided sampling.
- Only used for "classifier" or "classifier-free" guidance type.
- unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
- Only used for "classifier-free" guidance type.
- guidance_scale: A `float`. The scale for the guided sampling.
- classifier_fn: A classifier function. Only used for the classifier guidance.
- classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
- Returns:
- A noise prediction model that accepts the noised data and the continuous time as the inputs.
- """
-
- def get_model_input_time(t_continuous):
- """
- Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
- For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
- For continuous-time DPMs, we just use `t_continuous`.
- """
- if noise_schedule.schedule == 'discrete':
- return (t_continuous - 1. / noise_schedule.total_N) * noise_schedule.total_N
- else:
- return t_continuous
-
- def noise_pred_fn(x, t_continuous, cond=None):
- if t_continuous.reshape((-1,)).shape[0] == 1:
- t_continuous = t_continuous.expand((x.shape[0]))
- t_input = get_model_input_time(t_continuous)
- if cond is None:
- output = model(x, t_input, **model_kwargs)
- else:
- output = model(x, t_input, cond, **model_kwargs)
- if model_type == "noise":
- return output
- elif model_type == "x_start":
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
- elif model_type == "v":
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
- elif model_type == "score":
- sigma_t = noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return -expand_dims(sigma_t, dims) * output
-
- def cond_grad_fn(x, t_input):
- """
- Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
- """
- with torch.enable_grad():
- x_in = x.detach().requires_grad_(True)
- log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
- return torch.autograd.grad(log_prob.sum(), x_in)[0]
-
- def model_fn(x, t_continuous):
- """
- The noise predicition model function that is used for DPM-Solver.
- """
- if t_continuous.reshape((-1,)).shape[0] == 1:
- t_continuous = t_continuous.expand((x.shape[0]))
- if guidance_type == "uncond":
- return noise_pred_fn(x, t_continuous)
- elif guidance_type == "classifier":
- assert classifier_fn is not None
- t_input = get_model_input_time(t_continuous)
- cond_grad = cond_grad_fn(x, t_input)
- sigma_t = noise_schedule.marginal_std(t_continuous)
- noise = noise_pred_fn(x, t_continuous)
- return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
- elif guidance_type == "classifier-free":
- if guidance_scale == 1. or unconditional_condition is None:
- return noise_pred_fn(x, t_continuous, cond=condition)
- else:
- x_in = torch.cat([x] * 2)
- t_in = torch.cat([t_continuous] * 2)
- c_in = torch.cat([unconditional_condition, condition])
- noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
- return noise_uncond + guidance_scale * (noise - noise_uncond)
-
- assert model_type in ["noise", "x_start", "v"]
- assert guidance_type in ["uncond", "classifier", "classifier-free"]
- return model_fn
-
-
-class DPM_Solver:
- def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
- """Construct a DPM-Solver.
-
- We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
- If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
- If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
- In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
- The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
-
- Args:
- model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
- ``
- def model_fn(x, t_continuous):
- return noise
- ``
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
- predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
- thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
- max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
-
- [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
- """
- self.model = model_fn
- self.noise_schedule = noise_schedule
- self.predict_x0 = predict_x0
- self.thresholding = thresholding
- self.max_val = max_val
-
- def noise_prediction_fn(self, x, t):
- """
- Return the noise prediction model.
- """
- return self.model(x, t)
-
- def data_prediction_fn(self, x, t):
- """
- Return the data prediction model (with thresholding).
- """
- noise = self.noise_prediction_fn(x, t)
- dims = x.dim()
- alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
- x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
- if self.thresholding:
- p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
- s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
- x0 = torch.clamp(x0, -s, s) / s
- return x0
-
- def model_fn(self, x, t):
- """
- Convert the model to the noise prediction model or the data prediction model.
- """
- if self.predict_x0:
- return self.data_prediction_fn(x, t)
- else:
- return self.noise_prediction_fn(x, t)
-
- def get_time_steps(self, skip_type, t_T, t_0, N, device):
- """Compute the intermediate time steps for sampling.
-
- Args:
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- - 'logSNR': uniform logSNR for the time steps.
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
- t_T: A `float`. The starting time of the sampling (default is T).
- t_0: A `float`. The ending time of the sampling (default is epsilon).
- N: A `int`. The total number of the spacing of the time steps.
- device: A torch device.
- Returns:
- A pytorch tensor of the time steps, with the shape (N + 1,).
- """
- if skip_type == 'logSNR':
- lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
- lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
- logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
- return self.noise_schedule.inverse_lambda(logSNR_steps)
- elif skip_type == 'time_uniform':
- return torch.linspace(t_T, t_0, N + 1).to(device)
- elif skip_type == 'time_quadratic':
- t_order = 2
- t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
- return t
- else:
- raise ValueError(
- "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
-
- def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
- """
- Get the order of each step for sampling by the singlestep DPM-Solver.
-
- We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
- Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
- - If order == 1:
- We take `steps` of DPM-Solver-1 (i.e. DDIM).
- - If order == 2:
- - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
- - If steps % 2 == 0, we use K steps of DPM-Solver-2.
- - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
- - If order == 3:
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
- - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
- - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
-
- ============================================
- Args:
- order: A `int`. The max order for the solver (2 or 3).
- steps: A `int`. The total number of function evaluations (NFE).
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- - 'logSNR': uniform logSNR for the time steps.
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
- t_T: A `float`. The starting time of the sampling (default is T).
- t_0: A `float`. The ending time of the sampling (default is epsilon).
- device: A torch device.
- Returns:
- orders: A list of the solver order of each step.
- """
- if order == 3:
- K = steps // 3 + 1
- if steps % 3 == 0:
- orders = [3, ] * (K - 2) + [2, 1]
- elif steps % 3 == 1:
- orders = [3, ] * (K - 1) + [1]
- else:
- orders = [3, ] * (K - 1) + [2]
- elif order == 2:
- if steps % 2 == 0:
- K = steps // 2
- orders = [2, ] * K
- else:
- K = steps // 2 + 1
- orders = [2, ] * (K - 1) + [1]
- elif order == 1:
- K = 1
- orders = [1, ] * steps
- else:
- raise ValueError("'order' must be '1' or '2' or '3'.")
- if skip_type == 'logSNR':
- # To reproduce the results in DPM-Solver paper
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
- else:
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
- torch.cumsum(torch.tensor([0, ] + orders), dim=0).to(device)]
- return timesteps_outer, orders
-
- def denoise_fn(self, x, s):
- """
- Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
- """
- return self.data_prediction_fn(x, s)
-
- def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
- """
- DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- model_s: A pytorch tensor. The model function evaluated at time `s`.
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
- return_intermediate: A `bool`. If true, also return the model value at time `s`.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- ns = self.noise_schedule
- dims = x.dim()
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
- h = lambda_t - lambda_s
- log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
- sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
- alpha_t = torch.exp(log_alpha_t)
-
- if self.predict_x0:
- phi_1 = torch.expm1(-h)
- if model_s is None:
- model_s = self.model_fn(x, s)
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- )
- if return_intermediate:
- return x_t, {'model_s': model_s}
- else:
- return x_t
- else:
- phi_1 = torch.expm1(h)
- if model_s is None:
- model_s = self.model_fn(x, s)
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- )
- if return_intermediate:
- return x_t, {'model_s': model_s}
- else:
- return x_t
-
- def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
- solver_type='dpm_solver'):
- """
- Singlestep solver DPM-Solver-2 from time `s` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- r1: A `float`. The hyperparameter of the second-order solver.
- model_s: A pytorch tensor. The model function evaluated at time `s`.
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
- return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if solver_type not in ['dpm_solver', 'taylor']:
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
- if r1 is None:
- r1 = 0.5
- ns = self.noise_schedule
- dims = x.dim()
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
- h = lambda_t - lambda_s
- lambda_s1 = lambda_s + r1 * h
- s1 = ns.inverse_lambda(lambda_s1)
- log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
- s1), ns.marginal_log_mean_coeff(t)
- sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
- alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
-
- if self.predict_x0:
- phi_11 = torch.expm1(-r1 * h)
- phi_1 = torch.expm1(-h)
-
- if model_s is None:
- model_s = self.model_fn(x, s)
- x_s1 = (
- expand_dims(sigma_s1 / sigma_s, dims) * x
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
- )
- model_s1 = self.model_fn(x_s1, s1)
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
- )
- elif solver_type == 'taylor':
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
- model_s1 - model_s)
- )
- else:
- phi_11 = torch.expm1(r1 * h)
- phi_1 = torch.expm1(h)
-
- if model_s is None:
- model_s = self.model_fn(x, s)
- x_s1 = (
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
- )
- model_s1 = self.model_fn(x_s1, s1)
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
- )
- elif solver_type == 'taylor':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
- )
- if return_intermediate:
- return x_t, {'model_s': model_s, 'model_s1': model_s1}
- else:
- return x_t
-
- def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
- return_intermediate=False, solver_type='dpm_solver'):
- """
- Singlestep solver DPM-Solver-3 from time `s` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- r1: A `float`. The hyperparameter of the third-order solver.
- r2: A `float`. The hyperparameter of the third-order solver.
- model_s: A pytorch tensor. The model function evaluated at time `s`.
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
- model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
- If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if solver_type not in ['dpm_solver', 'taylor']:
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
- if r1 is None:
- r1 = 1. / 3.
- if r2 is None:
- r2 = 2. / 3.
- ns = self.noise_schedule
- dims = x.dim()
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
- h = lambda_t - lambda_s
- lambda_s1 = lambda_s + r1 * h
- lambda_s2 = lambda_s + r2 * h
- s1 = ns.inverse_lambda(lambda_s1)
- s2 = ns.inverse_lambda(lambda_s2)
- log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
- s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
- sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
- s2), ns.marginal_std(t)
- alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
-
- if self.predict_x0:
- phi_11 = torch.expm1(-r1 * h)
- phi_12 = torch.expm1(-r2 * h)
- phi_1 = torch.expm1(-h)
- phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
- phi_2 = phi_1 / h + 1.
- phi_3 = phi_2 / h - 0.5
-
- if model_s is None:
- model_s = self.model_fn(x, s)
- if model_s1 is None:
- x_s1 = (
- expand_dims(sigma_s1 / sigma_s, dims) * x
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
- )
- model_s1 = self.model_fn(x_s1, s1)
- x_s2 = (
- expand_dims(sigma_s2 / sigma_s, dims) * x
- - expand_dims(alpha_s2 * phi_12, dims) * model_s
- + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
- )
- model_s2 = self.model_fn(x_s2, s2)
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
- )
- elif solver_type == 'taylor':
- D1_0 = (1. / r1) * (model_s1 - model_s)
- D1_1 = (1. / r2) * (model_s2 - model_s)
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- + expand_dims(alpha_t * phi_2, dims) * D1
- - expand_dims(alpha_t * phi_3, dims) * D2
- )
- else:
- phi_11 = torch.expm1(r1 * h)
- phi_12 = torch.expm1(r2 * h)
- phi_1 = torch.expm1(h)
- phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
- phi_2 = phi_1 / h - 1.
- phi_3 = phi_2 / h - 0.5
-
- if model_s is None:
- model_s = self.model_fn(x, s)
- if model_s1 is None:
- x_s1 = (
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
- )
- model_s1 = self.model_fn(x_s1, s1)
- x_s2 = (
- expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
- - expand_dims(sigma_s2 * phi_12, dims) * model_s
- - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
- )
- model_s2 = self.model_fn(x_s2, s2)
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
- )
- elif solver_type == 'taylor':
- D1_0 = (1. / r1) * (model_s1 - model_s)
- D1_1 = (1. / r2) * (model_s2 - model_s)
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- - expand_dims(sigma_t * phi_2, dims) * D1
- - expand_dims(sigma_t * phi_3, dims) * D2
- )
-
- if return_intermediate:
- return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
- else:
- return x_t
-
- def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
- """
- Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- model_prev_list: A list of pytorch tensor. The previous computed model values.
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if solver_type not in ['dpm_solver', 'taylor']:
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
- ns = self.noise_schedule
- dims = x.dim()
- model_prev_1, model_prev_0 = model_prev_list
- t_prev_1, t_prev_0 = t_prev_list
- lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
- t_prev_0), ns.marginal_lambda(t)
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
- alpha_t = torch.exp(log_alpha_t)
-
- h_0 = lambda_prev_0 - lambda_prev_1
- h = lambda_t - lambda_prev_0
- r0 = h_0 / h
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
- if self.predict_x0:
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(sigma_t / sigma_prev_0, dims) * x
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
- - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
- )
- elif solver_type == 'taylor':
- x_t = (
- expand_dims(sigma_t / sigma_prev_0, dims) * x
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
- )
- else:
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
- - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
- )
- elif solver_type == 'taylor':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
- )
- return x_t
-
- def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
- """
- Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- model_prev_list: A list of pytorch tensor. The previous computed model values.
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- ns = self.noise_schedule
- dims = x.dim()
- model_prev_2, model_prev_1, model_prev_0 = model_prev_list
- t_prev_2, t_prev_1, t_prev_0 = t_prev_list
- lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
- t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
- alpha_t = torch.exp(log_alpha_t)
-
- h_1 = lambda_prev_1 - lambda_prev_2
- h_0 = lambda_prev_0 - lambda_prev_1
- h = lambda_t - lambda_prev_0
- r0, r1 = h_0 / h, h_1 / h
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
- D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
- D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
- D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
- if self.predict_x0:
- x_t = (
- expand_dims(sigma_t / sigma_prev_0, dims) * x
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
- - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
- )
- else:
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
- - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
- )
- return x_t
-
- def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
- r2=None):
- """
- Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- r1: A `float`. The hyperparameter of the second-order or third-order solver.
- r2: A `float`. The hyperparameter of the third-order solver.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if order == 1:
- return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
- elif order == 2:
- return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
- solver_type=solver_type, r1=r1)
- elif order == 3:
- return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
- solver_type=solver_type, r1=r1, r2=r2)
- else:
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
-
- def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
- """
- Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- model_prev_list: A list of pytorch tensor. The previous computed model values.
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if order == 1:
- return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
- elif order == 2:
- return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
- elif order == 3:
- return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
- else:
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
-
- def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
- solver_type='dpm_solver'):
- """
- The adaptive step size solver based on singlestep DPM-Solver.
-
- Args:
- x: A pytorch tensor. The initial value at time `t_T`.
- order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
- t_T: A `float`. The starting time of the sampling (default is T).
- t_0: A `float`. The ending time of the sampling (default is epsilon).
- h_init: A `float`. The initial step size (for logSNR).
- atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
- rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
- theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
- t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
- current time and `t_0` is less than `t_err`. The default setting is 1e-5.
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_0: A pytorch tensor. The approximated solution at time `t_0`.
-
- [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
- """
- ns = self.noise_schedule
- s = t_T * torch.ones((x.shape[0],)).to(x)
- lambda_s = ns.marginal_lambda(s)
- lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
- h = h_init * torch.ones_like(s).to(x)
- x_prev = x
- nfe = 0
- if order == 2:
- r1 = 0.5
- lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
- solver_type=solver_type,
- **kwargs)
- elif order == 3:
- r1, r2 = 1. / 3., 2. / 3.
- lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
- return_intermediate=True,
- solver_type=solver_type)
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
- solver_type=solver_type,
- **kwargs)
- else:
- raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
- while torch.abs((s - t_0)).mean() > t_err:
- t = ns.inverse_lambda(lambda_s + h)
- x_lower, lower_noise_kwargs = lower_update(x, s, t)
- x_higher = higher_update(x, s, t, **lower_noise_kwargs)
- delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
- norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
- E = norm_fn((x_higher - x_lower) / delta).max()
- if torch.all(E <= 1.):
- x = x_higher
- s = t
- x_prev = x_lower
- lambda_s = ns.marginal_lambda(s)
- h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
- nfe += order
- print('adaptive solver nfe', nfe)
- return x
-
- def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
- method='singlestep', denoise=False, solver_type='dpm_solver', atol=0.0078,
- rtol=0.05,
- ):
- """
- Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
-
- =====================================================
-
- We support the following algorithms for both noise prediction model and data prediction model:
- - 'singlestep':
- Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
- We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
- The total number of function evaluations (NFE) == `steps`.
- Given a fixed NFE == `steps`, the sampling procedure is:
- - If `order` == 1:
- - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
- - If `order` == 2:
- - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
- - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
- - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
- - If `order` == 3:
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
- - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
- - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
- - 'multistep':
- Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
- We initialize the first `order` values by lower order multistep solvers.
- Given a fixed NFE == `steps`, the sampling procedure is:
- Denote K = steps.
- - If `order` == 1:
- - We use K steps of DPM-Solver-1 (i.e. DDIM).
- - If `order` == 2:
- - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
- - If `order` == 3:
- - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
- - 'singlestep_fixed':
- Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
- We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
- - 'adaptive':
- Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
- We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
- You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
- (NFE) and the sample quality.
- - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
- - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
-
- =====================================================
-
- Some advices for choosing the algorithm:
- - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
- Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
- e.g.
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
- skip_type='time_uniform', method='singlestep')
- - For **guided sampling with large guidance scale** by DPMs:
- Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
- e.g.
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
- skip_type='time_uniform', method='multistep')
-
- We support three types of `skip_type`:
- - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
- - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
- - 'time_quadratic': quadratic time for the time steps.
-
- =====================================================
- Args:
- x: A pytorch tensor. The initial value at time `t_start`
- e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
- steps: A `int`. The total number of function evaluations (NFE).
- t_start: A `float`. The starting time of the sampling.
- If `T` is None, we use self.noise_schedule.T (default is 1.0).
- t_end: A `float`. The ending time of the sampling.
- If `t_end` is None, we use 1. / self.noise_schedule.total_N.
- e.g. if total_N == 1000, we have `t_end` == 1e-3.
- For discrete-time DPMs:
- - We recommend `t_end` == 1. / self.noise_schedule.total_N.
- For continuous-time DPMs:
- - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
- order: A `int`. The order of DPM-Solver.
- skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
- method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
- denoise: A `bool`. Whether to denoise at the final step. Default is False.
- If `denoise` is True, the total NFE is (`steps` + 1).
- solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
- atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
- rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
- Returns:
- x_end: A pytorch tensor. The approximated solution at time `t_end`.
-
- """
- t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
- t_T = self.noise_schedule.T if t_start is None else t_start
- device = x.device
- if method == 'adaptive':
- with torch.no_grad():
- x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
- solver_type=solver_type)
- elif method == 'multistep':
- assert steps >= order
- timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
- assert timesteps.shape[0] - 1 == steps
- with torch.no_grad():
- vec_t = timesteps[0].expand((x.shape[0]))
- model_prev_list = [self.model_fn(x, vec_t)]
- t_prev_list = [vec_t]
- # Init the first `order` values by lower order multistep DPM-Solver.
- for init_order in range(1, order):
- vec_t = timesteps[init_order].expand(x.shape[0])
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
- solver_type=solver_type)
- model_prev_list.append(self.model_fn(x, vec_t))
- t_prev_list.append(vec_t)
- # Compute the remaining values by `order`-th order multistep DPM-Solver.
- for step in range(order, steps + 1):
- vec_t = timesteps[step].expand(x.shape[0])
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, order,
- solver_type=solver_type)
- for i in range(order - 1):
- t_prev_list[i] = t_prev_list[i + 1]
- model_prev_list[i] = model_prev_list[i + 1]
- t_prev_list[-1] = vec_t
- # We do not need to evaluate the final model value.
- if step < steps:
- model_prev_list[-1] = self.model_fn(x, vec_t)
- elif method in ['singlestep', 'singlestep_fixed']:
- if method == 'singlestep':
- timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
- skip_type=skip_type,
- t_T=t_T, t_0=t_0,
- device=device)
- elif method == 'singlestep_fixed':
- K = steps // order
- orders = [order, ] * K
- timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
- for i, order in enumerate(orders):
- t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
- timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
- N=order, device=device)
- lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
- vec_s, vec_t = t_T_inner.repeat(x.shape[0]), t_0_inner.repeat(x.shape[0])
- h = lambda_inner[-1] - lambda_inner[0]
- r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
- r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
- x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
- if denoise:
- x = self.denoise_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
- return x
-
-
-#############################################################
-# other utility functions
-#############################################################
-
-def interpolate_fn(x, xp, yp):
- """
- A piecewise linear function y = f(x), using xp and yp as keypoints.
- We implement f(x) in a differentiable way (i.e. applicable for autograd).
- The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
-
- Args:
- x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
- xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
- yp: PyTorch tensor with shape [C, K].
- Returns:
- The function values f(x), with shape [N, C].
- """
- N, K = x.shape[0], xp.shape[1]
- all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
- sorted_all_x, x_indices = torch.sort(all_x, dim=2)
- x_idx = torch.argmin(x_indices, dim=2)
- cand_start_idx = x_idx - 1
- start_idx = torch.where(
- torch.eq(x_idx, 0),
- torch.tensor(1, device=x.device),
- torch.where(
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
- ),
- )
- end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
- start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
- end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
- start_idx2 = torch.where(
- torch.eq(x_idx, 0),
- torch.tensor(0, device=x.device),
- torch.where(
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
- ),
- )
- y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
- start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
- end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
- cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
- return cand
-
-
-def expand_dims(v, dims):
- """
- Expand the tensor `v` to the dim `dims`.
-
- Args:
- `v`: a PyTorch tensor with shape [N].
- `dim`: a `int`.
- Returns:
- a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
- """
- return v[(...,) + (None,) * (dims - 1)]
diff --git a/diffusion/how to export onnx.md b/diffusion/how to export onnx.md
deleted file mode 100644
index 6d22719fd1a8e9d034e6224cc95f4b50d44a0320..0000000000000000000000000000000000000000
--- a/diffusion/how to export onnx.md
+++ /dev/null
@@ -1,4 +0,0 @@
-- Open [onnx_export](onnx_export.py)
-- project_name = "dddsp" change "project_name" to your project name
-- model_path = f'{project_name}/model_500000.pt' change "model_path" to your model path
-- Run
\ No newline at end of file
diff --git a/diffusion/infer_gt_mel.py b/diffusion/infer_gt_mel.py
deleted file mode 100644
index 033b821a5d21a1232f1786bce5616b12e01488ad..0000000000000000000000000000000000000000
--- a/diffusion/infer_gt_mel.py
+++ /dev/null
@@ -1,74 +0,0 @@
-import numpy as np
-import torch
-import torch.nn.functional as F
-from diffusion.unit2mel import load_model_vocoder
-
-
-class DiffGtMel:
- def __init__(self, project_path=None, device=None):
- self.project_path = project_path
- if device is not None:
- self.device = device
- else:
- self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
- self.model = None
- self.vocoder = None
- self.args = None
-
- def flush_model(self, project_path, ddsp_config=None):
- if (self.model is None) or (project_path != self.project_path):
- model, vocoder, args = load_model_vocoder(project_path, device=self.device)
- if self.check_args(ddsp_config, args):
- self.model = model
- self.vocoder = vocoder
- self.args = args
-
- def check_args(self, args1, args2):
- if args1.data.block_size != args2.data.block_size:
- raise ValueError("DDSP与DIFF模型的block_size不一致")
- if args1.data.sampling_rate != args2.data.sampling_rate:
- raise ValueError("DDSP与DIFF模型的sampling_rate不一致")
- if args1.data.encoder != args2.data.encoder:
- raise ValueError("DDSP与DIFF模型的encoder不一致")
- return True
-
- def __call__(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm',
- spk_mix_dict=None, start_frame=0):
- input_mel = self.vocoder.extract(audio, self.args.data.sampling_rate)
- out_mel = self.model(
- hubert,
- f0,
- volume,
- spk_id=spk_id,
- spk_mix_dict=spk_mix_dict,
- gt_spec=input_mel,
- infer=True,
- infer_speedup=acc,
- method=method,
- k_step=k_step,
- use_tqdm=False)
- if start_frame > 0:
- out_mel = out_mel[:, start_frame:, :]
- f0 = f0[:, start_frame:, :]
- output = self.vocoder.infer(out_mel, f0)
- if start_frame > 0:
- output = F.pad(output, (start_frame * self.vocoder.vocoder_hop_size, 0))
- return output
-
- def infer(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', silence_front=0,
- use_silence=False, spk_mix_dict=None):
- start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size)
- if use_silence:
- audio = audio[:, start_frame * self.vocoder.vocoder_hop_size:]
- f0 = f0[:, start_frame:, :]
- hubert = hubert[:, start_frame:, :]
- volume = volume[:, start_frame:, :]
- _start_frame = 0
- else:
- _start_frame = start_frame
- audio = self.__call__(audio, f0, hubert, volume, acc=acc, spk_id=spk_id, k_step=k_step,
- method=method, spk_mix_dict=spk_mix_dict, start_frame=_start_frame)
- if use_silence:
- if start_frame > 0:
- audio = F.pad(audio, (start_frame * self.vocoder.vocoder_hop_size, 0))
- return audio
diff --git a/diffusion/logger/__init__.py b/diffusion/logger/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/diffusion/logger/saver.py b/diffusion/logger/saver.py
deleted file mode 100644
index ef78b52b6bcd32106f962b731d3784d72d5f0cce..0000000000000000000000000000000000000000
--- a/diffusion/logger/saver.py
+++ /dev/null
@@ -1,150 +0,0 @@
-'''
-author: wayn391@mastertones
-'''
-
-import os
-import json
-import time
-import yaml
-import datetime
-import torch
-import matplotlib.pyplot as plt
-from . import utils
-from torch.utils.tensorboard import SummaryWriter
-
-class Saver(object):
- def __init__(
- self,
- args,
- initial_global_step=-1):
-
- self.expdir = args.env.expdir
- self.sample_rate = args.data.sampling_rate
-
- # cold start
- self.global_step = initial_global_step
- self.init_time = time.time()
- self.last_time = time.time()
-
- # makedirs
- os.makedirs(self.expdir, exist_ok=True)
-
- # path
- self.path_log_info = os.path.join(self.expdir, 'log_info.txt')
-
- # ckpt
- os.makedirs(self.expdir, exist_ok=True)
-
- # writer
- self.writer = SummaryWriter(os.path.join(self.expdir, 'logs'))
-
- # save config
- path_config = os.path.join(self.expdir, 'config.yaml')
- with open(path_config, "w") as out_config:
- yaml.dump(dict(args), out_config)
-
-
- def log_info(self, msg):
- '''log method'''
- if isinstance(msg, dict):
- msg_list = []
- for k, v in msg.items():
- tmp_str = ''
- if isinstance(v, int):
- tmp_str = '{}: {:,}'.format(k, v)
- else:
- tmp_str = '{}: {}'.format(k, v)
-
- msg_list.append(tmp_str)
- msg_str = '\n'.join(msg_list)
- else:
- msg_str = msg
-
- # dsplay
- print(msg_str)
-
- # save
- with open(self.path_log_info, 'a') as fp:
- fp.write(msg_str+'\n')
-
- def log_value(self, dict):
- for k, v in dict.items():
- self.writer.add_scalar(k, v, self.global_step)
-
- def log_spec(self, name, spec, spec_out, vmin=-14, vmax=3.5):
- spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1)
- spec = spec_cat[0]
- if isinstance(spec, torch.Tensor):
- spec = spec.cpu().numpy()
- fig = plt.figure(figsize=(12, 9))
- plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
- plt.tight_layout()
- self.writer.add_figure(name, fig, self.global_step)
-
- def log_audio(self, dict):
- for k, v in dict.items():
- self.writer.add_audio(k, v, global_step=self.global_step, sample_rate=self.sample_rate)
-
- def get_interval_time(self, update=True):
- cur_time = time.time()
- time_interval = cur_time - self.last_time
- if update:
- self.last_time = cur_time
- return time_interval
-
- def get_total_time(self, to_str=True):
- total_time = time.time() - self.init_time
- if to_str:
- total_time = str(datetime.timedelta(
- seconds=total_time))[:-5]
- return total_time
-
- def save_model(
- self,
- model,
- optimizer,
- name='model',
- postfix='',
- to_json=False):
- # path
- if postfix:
- postfix = '_' + postfix
- path_pt = os.path.join(
- self.expdir , name+postfix+'.pt')
-
- # check
- print(' [*] model checkpoint saved: {}'.format(path_pt))
-
- # save
- if optimizer is not None:
- torch.save({
- 'global_step': self.global_step,
- 'model': model.state_dict(),
- 'optimizer': optimizer.state_dict()}, path_pt)
- else:
- torch.save({
- 'global_step': self.global_step,
- 'model': model.state_dict()}, path_pt)
-
- # to json
- if to_json:
- path_json = os.path.join(
- self.expdir , name+'.json')
- utils.to_json(path_params, path_json)
-
- def delete_model(self, name='model', postfix=''):
- # path
- if postfix:
- postfix = '_' + postfix
- path_pt = os.path.join(
- self.expdir , name+postfix+'.pt')
-
- # delete
- if os.path.exists(path_pt):
- os.remove(path_pt)
- print(' [*] model checkpoint deleted: {}'.format(path_pt))
-
- def global_step_increment(self):
- self.global_step += 1
-
-
diff --git a/diffusion/logger/utils.py b/diffusion/logger/utils.py
deleted file mode 100644
index 485681ced897980dc0bf5b149308245bbd708de9..0000000000000000000000000000000000000000
--- a/diffusion/logger/utils.py
+++ /dev/null
@@ -1,126 +0,0 @@
-import os
-import yaml
-import json
-import pickle
-import torch
-
-def traverse_dir(
- root_dir,
- extensions,
- amount=None,
- str_include=None,
- str_exclude=None,
- is_pure=False,
- is_sort=False,
- is_ext=True):
-
- file_list = []
- cnt = 0
- for root, _, files in os.walk(root_dir):
- for file in files:
- if any([file.endswith(f".{ext}") for ext in extensions]):
- # path
- mix_path = os.path.join(root, file)
- pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
-
- # amount
- if (amount is not None) and (cnt == amount):
- if is_sort:
- file_list.sort()
- return file_list
-
- # check string
- if (str_include is not None) and (str_include not in pure_path):
- continue
- if (str_exclude is not None) and (str_exclude in pure_path):
- continue
-
- if not is_ext:
- ext = pure_path.split('.')[-1]
- pure_path = pure_path[:-(len(ext)+1)]
- file_list.append(pure_path)
- cnt += 1
- if is_sort:
- file_list.sort()
- return file_list
-
-
-
-class DotDict(dict):
- def __getattr__(*args):
- val = dict.get(*args)
- return DotDict(val) if type(val) is dict else val
-
- __setattr__ = dict.__setitem__
- __delattr__ = dict.__delitem__
-
-
-def get_network_paras_amount(model_dict):
- info = dict()
- for model_name, model in model_dict.items():
- # all_params = sum(p.numel() for p in model.parameters())
- trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
-
- info[model_name] = trainable_params
- return info
-
-
-def load_config(path_config):
- with open(path_config, "r") as config:
- args = yaml.safe_load(config)
- args = DotDict(args)
- # print(args)
- return args
-
-def save_config(path_config,config):
- config = dict(config)
- with open(path_config, "w") as f:
- yaml.dump(config, f)
-
-def to_json(path_params, path_json):
- params = torch.load(path_params, map_location=torch.device('cpu'))
- raw_state_dict = {}
- for k, v in params.items():
- val = v.flatten().numpy().tolist()
- raw_state_dict[k] = val
-
- with open(path_json, 'w') as outfile:
- json.dump(raw_state_dict, outfile,indent= "\t")
-
-
-def convert_tensor_to_numpy(tensor, is_squeeze=True):
- if is_squeeze:
- tensor = tensor.squeeze()
- if tensor.requires_grad:
- tensor = tensor.detach()
- if tensor.is_cuda:
- tensor = tensor.cpu()
- return tensor.numpy()
-
-
-def load_model(
- expdir,
- model,
- optimizer,
- name='model',
- postfix='',
- device='cpu'):
- if postfix == '':
- postfix = '_' + postfix
- path = os.path.join(expdir, name+postfix)
- path_pt = traverse_dir(expdir, ['pt'], is_ext=False)
- global_step = 0
- if len(path_pt) > 0:
- steps = [s[len(path):] for s in path_pt]
- maxstep = max([int(s) if s.isdigit() else 0 for s in steps])
- if maxstep >= 0:
- path_pt = path+str(maxstep)+'.pt'
- else:
- path_pt = path+'best.pt'
- print(' [*] restoring model from', path_pt)
- ckpt = torch.load(path_pt, map_location=torch.device(device))
- global_step = ckpt['global_step']
- model.load_state_dict(ckpt['model'], strict=False)
- if ckpt.get('optimizer') != None:
- optimizer.load_state_dict(ckpt['optimizer'])
- return global_step, model, optimizer
diff --git a/diffusion/onnx_export.py b/diffusion/onnx_export.py
deleted file mode 100644
index 5deda785cf22b341f7d2e6399ef5fcdad6fe129e..0000000000000000000000000000000000000000
--- a/diffusion/onnx_export.py
+++ /dev/null
@@ -1,226 +0,0 @@
-from diffusion_onnx import GaussianDiffusion
-import os
-import yaml
-import torch
-import torch.nn as nn
-import numpy as np
-from wavenet import WaveNet
-import torch.nn.functional as F
-import diffusion
-
-class DotDict(dict):
- def __getattr__(*args):
- val = dict.get(*args)
- return DotDict(val) if type(val) is dict else val
-
- __setattr__ = dict.__setitem__
- __delattr__ = dict.__delitem__
-
-
-def load_model_vocoder(
- model_path,
- device='cpu'):
- config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
- with open(config_file, "r") as config:
- args = yaml.safe_load(config)
- args = DotDict(args)
-
- # load model
- model = Unit2Mel(
- args.data.encoder_out_channels,
- args.model.n_spk,
- args.model.use_pitch_aug,
- 128,
- args.model.n_layers,
- args.model.n_chans,
- args.model.n_hidden)
-
- print(' [Loading] ' + model_path)
- ckpt = torch.load(model_path, map_location=torch.device(device))
- model.to(device)
- model.load_state_dict(ckpt['model'])
- model.eval()
- return model, args
-
-
-class Unit2Mel(nn.Module):
- def __init__(
- self,
- input_channel,
- n_spk,
- use_pitch_aug=False,
- out_dims=128,
- n_layers=20,
- n_chans=384,
- n_hidden=256):
- super().__init__()
- self.unit_embed = nn.Linear(input_channel, n_hidden)
- self.f0_embed = nn.Linear(1, n_hidden)
- self.volume_embed = nn.Linear(1, n_hidden)
- if use_pitch_aug:
- self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
- else:
- self.aug_shift_embed = None
- self.n_spk = n_spk
- if n_spk is not None and n_spk > 1:
- self.spk_embed = nn.Embedding(n_spk, n_hidden)
-
- # diffusion
- self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden)
- self.hidden_size = n_hidden
- self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden))
-
-
-
- def forward(self, units, mel2ph, f0, volume, g = None):
-
- '''
- input:
- B x n_frames x n_unit
- return:
- dict of B x n_frames x feat
- '''
-
- decoder_inp = F.pad(units, [0, 0, 1, 0])
- mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
- units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
-
- x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
-
- if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
- g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
- g = g * self.speaker_map # [N, S, B, 1, H]
- g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
- g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
- x = x.transpose(1, 2) + g
- return x
- else:
- return x.transpose(1, 2)
-
-
- def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
- gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
-
- '''
- input:
- B x n_frames x n_unit
- return:
- dict of B x n_frames x feat
- '''
- x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
- if self.n_spk is not None and self.n_spk > 1:
- if spk_mix_dict is not None:
- spk_embed_mix = torch.zeros((1,1,self.hidden_size))
- for k, v in spk_mix_dict.items():
- spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
- spk_embeddd = self.spk_embed(spk_id_torch)
- self.speaker_map[k] = spk_embeddd
- spk_embed_mix = spk_embed_mix + v * spk_embeddd
- x = x + spk_embed_mix
- else:
- x = x + self.spk_embed(spk_id - 1)
- self.speaker_map = self.speaker_map.unsqueeze(0)
- self.speaker_map = self.speaker_map.detach()
- return x.transpose(1, 2)
-
- def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
- hubert_hidden_size = 768
- n_frames = 100
- hubert = torch.randn((1, n_frames, hubert_hidden_size))
- mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
- f0 = torch.randn((1, n_frames))
- volume = torch.randn((1, n_frames))
- spk_mix = []
- spks = {}
- if self.n_spk is not None and self.n_spk > 1:
- for i in range(self.n_spk):
- spk_mix.append(1.0/float(self.n_spk))
- spks.update({i:1.0/float(self.n_spk)})
- spk_mix = torch.tensor(spk_mix)
- spk_mix = spk_mix.repeat(n_frames, 1)
- orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
- outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
- if export_encoder:
- torch.onnx.export(
- self,
- (hubert, mel2ph, f0, volume, spk_mix),
- f"{project_name}_encoder.onnx",
- input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
- output_names=["mel_pred"],
- dynamic_axes={
- "hubert": [1],
- "f0": [1],
- "volume": [1],
- "mel2ph": [1],
- "spk_mix": [0],
- },
- opset_version=16
- )
-
- self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)
-
- def ExportOnnx(self, project_name=None):
- hubert_hidden_size = 768
- n_frames = 100
- hubert = torch.randn((1, n_frames, hubert_hidden_size))
- mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
- f0 = torch.randn((1, n_frames))
- volume = torch.randn((1, n_frames))
- spk_mix = []
- spks = {}
- if self.n_spk is not None and self.n_spk > 1:
- for i in range(self.n_spk):
- spk_mix.append(1.0/float(self.n_spk))
- spks.update({i:1.0/float(self.n_spk)})
- spk_mix = torch.tensor(spk_mix)
- orgouttt = self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
- outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
-
- torch.onnx.export(
- self,
- (hubert, mel2ph, f0, volume, spk_mix),
- f"{project_name}_encoder.onnx",
- input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
- output_names=["mel_pred"],
- dynamic_axes={
- "hubert": [1],
- "f0": [1],
- "volume": [1],
- "mel2ph": [1]
- },
- opset_version=16
- )
-
- condition = torch.randn(1,self.decoder.n_hidden,n_frames)
- noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
- pndm_speedup = torch.LongTensor([100])
- K_steps = torch.LongTensor([1000])
- self.decoder = torch.jit.script(self.decoder)
- self.decoder(condition, noise, pndm_speedup, K_steps)
-
- torch.onnx.export(
- self.decoder,
- (condition, noise, pndm_speedup, K_steps),
- f"{project_name}_diffusion.onnx",
- input_names=["condition", "noise", "pndm_speedup", "K_steps"],
- output_names=["mel"],
- dynamic_axes={
- "condition": [2],
- "noise": [3],
- },
- opset_version=16
- )
-
-
-if __name__ == "__main__":
- project_name = "dddsp"
- model_path = f'{project_name}/model_500000.pt'
-
- model, _ = load_model_vocoder(model_path)
-
- # 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样)
- model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)
-
- # 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可)
- # model.ExportOnnx(project_name)
-
diff --git a/diffusion/solver.py b/diffusion/solver.py
deleted file mode 100644
index aaf0b21591b42fa903424f8d44fef88d7d791e57..0000000000000000000000000000000000000000
--- a/diffusion/solver.py
+++ /dev/null
@@ -1,195 +0,0 @@
-import os
-import time
-import numpy as np
-import torch
-import librosa
-from diffusion.logger.saver import Saver
-from diffusion.logger import utils
-from torch import autocast
-from torch.cuda.amp import GradScaler
-
-def test(args, model, vocoder, loader_test, saver):
- print(' [*] testing...')
- model.eval()
-
- # losses
- test_loss = 0.
-
- # intialization
- num_batches = len(loader_test)
- rtf_all = []
-
- # run
- with torch.no_grad():
- for bidx, data in enumerate(loader_test):
- fn = data['name'][0].split("/")[-1]
- speaker = data['name'][0].split("/")[-2]
- print('--------')
- print('{}/{} - {}'.format(bidx, num_batches, fn))
-
- # unpack data
- for k in data.keys():
- if not k.startswith('name'):
- data[k] = data[k].to(args.device)
- print('>>', data['name'][0])
-
- # forward
- st_time = time.time()
- mel = model(
- data['units'],
- data['f0'],
- data['volume'],
- data['spk_id'],
- gt_spec=None,
- infer=True,
- infer_speedup=args.infer.speedup,
- method=args.infer.method)
- signal = vocoder.infer(mel, data['f0'])
- ed_time = time.time()
-
- # RTF
- run_time = ed_time - st_time
- song_time = signal.shape[-1] / args.data.sampling_rate
- rtf = run_time / song_time
- print('RTF: {} | {} / {}'.format(rtf, run_time, song_time))
- rtf_all.append(rtf)
-
- # loss
- for i in range(args.train.batch_size):
- loss = model(
- data['units'],
- data['f0'],
- data['volume'],
- data['spk_id'],
- gt_spec=data['mel'],
- infer=False)
- test_loss += loss.item()
-
- # log mel
- saver.log_spec(f"{speaker}_{fn}.wav", data['mel'], mel)
-
- # log audi
- path_audio = data['name_ext'][0]
- audio, sr = librosa.load(path_audio, sr=args.data.sampling_rate)
- if len(audio.shape) > 1:
- audio = librosa.to_mono(audio)
- audio = torch.from_numpy(audio).unsqueeze(0).to(signal)
- saver.log_audio({f"{speaker}_{fn}_gt.wav": audio,f"{speaker}_{fn}_pred.wav": signal})
- # report
- test_loss /= args.train.batch_size
- test_loss /= num_batches
-
- # check
- print(' [test_loss] test_loss:', test_loss)
- print(' Real Time Factor', np.mean(rtf_all))
- return test_loss
-
-
-def train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_test):
- # saver
- saver = Saver(args, initial_global_step=initial_global_step)
-
- # model size
- params_count = utils.get_network_paras_amount({'model': model})
- saver.log_info('--- model size ---')
- saver.log_info(params_count)
-
- # run
- num_batches = len(loader_train)
- model.train()
- saver.log_info('======= start training =======')
- scaler = GradScaler()
- if args.train.amp_dtype == 'fp32':
- dtype = torch.float32
- elif args.train.amp_dtype == 'fp16':
- dtype = torch.float16
- elif args.train.amp_dtype == 'bf16':
- dtype = torch.bfloat16
- else:
- raise ValueError(' [x] Unknown amp_dtype: ' + args.train.amp_dtype)
- saver.log_info("epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step")
- for epoch in range(args.train.epochs):
- for batch_idx, data in enumerate(loader_train):
- saver.global_step_increment()
- optimizer.zero_grad()
-
- # unpack data
- for k in data.keys():
- if not k.startswith('name'):
- data[k] = data[k].to(args.device)
-
- # forward
- if dtype == torch.float32:
- loss = model(data['units'].float(), data['f0'], data['volume'], data['spk_id'],
- aug_shift = data['aug_shift'], gt_spec=data['mel'].float(), infer=False)
- else:
- with autocast(device_type=args.device, dtype=dtype):
- loss = model(data['units'], data['f0'], data['volume'], data['spk_id'],
- aug_shift = data['aug_shift'], gt_spec=data['mel'], infer=False)
-
- # handle nan loss
- if torch.isnan(loss):
- raise ValueError(' [x] nan loss ')
- else:
- # backpropagate
- if dtype == torch.float32:
- loss.backward()
- optimizer.step()
- else:
- scaler.scale(loss).backward()
- scaler.step(optimizer)
- scaler.update()
- scheduler.step()
-
- # log loss
- if saver.global_step % args.train.interval_log == 0:
- current_lr = optimizer.param_groups[0]['lr']
- saver.log_info(
- 'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | lr: {:.6} | loss: {:.3f} | time: {} | step: {}'.format(
- epoch,
- batch_idx,
- num_batches,
- args.env.expdir,
- args.train.interval_log/saver.get_interval_time(),
- current_lr,
- loss.item(),
- saver.get_total_time(),
- saver.global_step
- )
- )
-
- saver.log_value({
- 'train/loss': loss.item()
- })
-
- saver.log_value({
- 'train/lr': current_lr
- })
-
- # validation
- if saver.global_step % args.train.interval_val == 0:
- optimizer_save = optimizer if args.train.save_opt else None
-
- # save latest
- saver.save_model(model, optimizer_save, postfix=f'{saver.global_step}')
- last_val_step = saver.global_step - args.train.interval_val
- if last_val_step % args.train.interval_force_save != 0:
- saver.delete_model(postfix=f'{last_val_step}')
-
- # run testing set
- test_loss = test(args, model, vocoder, loader_test, saver)
-
- # log loss
- saver.log_info(
- ' --- --- \nloss: {:.3f}. '.format(
- test_loss,
- )
- )
-
- saver.log_value({
- 'validation/loss': test_loss
- })
-
- model.train()
-
-
diff --git a/diffusion/unit2mel.py b/diffusion/unit2mel.py
deleted file mode 100644
index 52293b13da8e1afeef6fa5586aeaf01cbcc27fb7..0000000000000000000000000000000000000000
--- a/diffusion/unit2mel.py
+++ /dev/null
@@ -1,147 +0,0 @@
-import os
-import yaml
-import torch
-import torch.nn as nn
-import numpy as np
-from .diffusion import GaussianDiffusion
-from .wavenet import WaveNet
-from .vocoder import Vocoder
-
-class DotDict(dict):
- def __getattr__(*args):
- val = dict.get(*args)
- return DotDict(val) if type(val) is dict else val
-
- __setattr__ = dict.__setitem__
- __delattr__ = dict.__delitem__
-
-
-def load_model_vocoder(
- model_path,
- device='cpu',
- config_path = None
- ):
- if config_path is None: config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
- else: config_file = config_path
-
- with open(config_file, "r") as config:
- args = yaml.safe_load(config)
- args = DotDict(args)
-
- # load vocoder
- vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=device)
-
- # load model
- model = Unit2Mel(
- args.data.encoder_out_channels,
- args.model.n_spk,
- args.model.use_pitch_aug,
- vocoder.dimension,
- args.model.n_layers,
- args.model.n_chans,
- args.model.n_hidden)
-
- print(' [Loading] ' + model_path)
- ckpt = torch.load(model_path, map_location=torch.device(device))
- model.to(device)
- model.load_state_dict(ckpt['model'])
- model.eval()
- return model, vocoder, args
-
-
-class Unit2Mel(nn.Module):
- def __init__(
- self,
- input_channel,
- n_spk,
- use_pitch_aug=False,
- out_dims=128,
- n_layers=20,
- n_chans=384,
- n_hidden=256):
- super().__init__()
- self.unit_embed = nn.Linear(input_channel, n_hidden)
- self.f0_embed = nn.Linear(1, n_hidden)
- self.volume_embed = nn.Linear(1, n_hidden)
- if use_pitch_aug:
- self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
- else:
- self.aug_shift_embed = None
- self.n_spk = n_spk
- if n_spk is not None and n_spk > 1:
- self.spk_embed = nn.Embedding(n_spk, n_hidden)
-
- self.n_hidden = n_hidden
- # diffusion
- self.decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden), out_dims=out_dims)
- self.input_channel = input_channel
-
- def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
- gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
-
- '''
- input:
- B x n_frames x n_unit
- return:
- dict of B x n_frames x feat
- '''
- x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
- if self.n_spk is not None and self.n_spk > 1:
- if spk_mix_dict is not None:
- spk_embed_mix = torch.zeros((1,1,self.hidden_size))
- for k, v in spk_mix_dict.items():
- spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
- spk_embeddd = self.spk_embed(spk_id_torch)
- self.speaker_map[k] = spk_embeddd
- spk_embed_mix = spk_embed_mix + v * spk_embeddd
- x = x + spk_embed_mix
- else:
- x = x + self.spk_embed(spk_id - 1)
- self.speaker_map = self.speaker_map.unsqueeze(0)
- self.speaker_map = self.speaker_map.detach()
- return x.transpose(1, 2)
-
- def init_spkmix(self, n_spk):
- self.speaker_map = torch.zeros((n_spk,1,1,self.n_hidden))
- hubert_hidden_size = self.input_channel
- n_frames = 10
- hubert = torch.randn((1, n_frames, hubert_hidden_size))
- mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
- f0 = torch.randn((1, n_frames))
- volume = torch.randn((1, n_frames))
- spks = {}
- for i in range(n_spk):
- spks.update({i:1.0/float(self.n_spk)})
- orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
-
- def forward(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
- gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
-
- '''
- input:
- B x n_frames x n_unit
- return:
- dict of B x n_frames x feat
- '''
-
- x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
- if self.n_spk is not None and self.n_spk > 1:
- if spk_mix_dict is not None:
- for k, v in spk_mix_dict.items():
- spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
- x = x + v * self.spk_embed(spk_id_torch)
- else:
- if spk_id.shape[1] > 1:
- g = spk_id.reshape((spk_id.shape[0], spk_id.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
- g = g * self.speaker_map # [N, S, B, 1, H]
- g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
- g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
- x = x + g
- else:
- x = x + self.spk_embed(spk_id)
- if self.aug_shift_embed is not None and aug_shift is not None:
- x = x + self.aug_shift_embed(aug_shift / 5)
- x = self.decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm)
-
- return x
-
diff --git a/diffusion/vocoder.py b/diffusion/vocoder.py
deleted file mode 100644
index bbaa47f64fd5a3191a24dfaa054c423fa86e5bae..0000000000000000000000000000000000000000
--- a/diffusion/vocoder.py
+++ /dev/null
@@ -1,94 +0,0 @@
-import torch
-from vdecoder.nsf_hifigan.nvSTFT import STFT
-from vdecoder.nsf_hifigan.models import load_model,load_config
-from torchaudio.transforms import Resample
-
-
-class Vocoder:
- def __init__(self, vocoder_type, vocoder_ckpt, device = None):
- if device is None:
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
- self.device = device
-
- if vocoder_type == 'nsf-hifigan':
- self.vocoder = NsfHifiGAN(vocoder_ckpt, device = device)
- elif vocoder_type == 'nsf-hifigan-log10':
- self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device = device)
- else:
- raise ValueError(f" [x] Unknown vocoder: {vocoder_type}")
-
- self.resample_kernel = {}
- self.vocoder_sample_rate = self.vocoder.sample_rate()
- self.vocoder_hop_size = self.vocoder.hop_size()
- self.dimension = self.vocoder.dimension()
-
- def extract(self, audio, sample_rate, keyshift=0):
-
- # resample
- if sample_rate == self.vocoder_sample_rate:
- audio_res = audio
- else:
- key_str = str(sample_rate)
- if key_str not in self.resample_kernel:
- self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width = 128).to(self.device)
- audio_res = self.resample_kernel[key_str](audio)
-
- # extract
- mel = self.vocoder.extract(audio_res, keyshift=keyshift) # B, n_frames, bins
- return mel
-
- def infer(self, mel, f0):
- f0 = f0[:,:mel.size(1),0] # B, n_frames
- audio = self.vocoder(mel, f0)
- return audio
-
-
-class NsfHifiGAN(torch.nn.Module):
- def __init__(self, model_path, device=None):
- super().__init__()
- if device is None:
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
- self.device = device
- self.model_path = model_path
- self.model = None
- self.h = load_config(model_path)
- self.stft = STFT(
- self.h.sampling_rate,
- self.h.num_mels,
- self.h.n_fft,
- self.h.win_size,
- self.h.hop_size,
- self.h.fmin,
- self.h.fmax)
-
- def sample_rate(self):
- return self.h.sampling_rate
-
- def hop_size(self):
- return self.h.hop_size
-
- def dimension(self):
- return self.h.num_mels
-
- def extract(self, audio, keyshift=0):
- mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2) # B, n_frames, bins
- return mel
-
- def forward(self, mel, f0):
- if self.model is None:
- print('| Load HifiGAN: ', self.model_path)
- self.model, self.h = load_model(self.model_path, device=self.device)
- with torch.no_grad():
- c = mel.transpose(1, 2)
- audio = self.model(c, f0)
- return audio
-
-class NsfHifiGANLog10(NsfHifiGAN):
- def forward(self, mel, f0):
- if self.model is None:
- print('| Load HifiGAN: ', self.model_path)
- self.model, self.h = load_model(self.model_path, device=self.device)
- with torch.no_grad():
- c = 0.434294 * mel.transpose(1, 2)
- audio = self.model(c, f0)
- return audio
\ No newline at end of file
diff --git a/diffusion/wavenet.py b/diffusion/wavenet.py
deleted file mode 100644
index 3d48c7eaaa0e8191b27a5d1890eb657cbcc0d143..0000000000000000000000000000000000000000
--- a/diffusion/wavenet.py
+++ /dev/null
@@ -1,108 +0,0 @@
-import math
-from math import sqrt
-
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-from torch.nn import Mish
-
-
-class Conv1d(torch.nn.Conv1d):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- nn.init.kaiming_normal_(self.weight)
-
-
-class SinusoidalPosEmb(nn.Module):
- def __init__(self, dim):
- super().__init__()
- self.dim = dim
-
- def forward(self, x):
- device = x.device
- half_dim = self.dim // 2
- emb = math.log(10000) / (half_dim - 1)
- emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
- emb = x[:, None] * emb[None, :]
- emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
- return emb
-
-
-class ResidualBlock(nn.Module):
- def __init__(self, encoder_hidden, residual_channels, dilation):
- super().__init__()
- self.residual_channels = residual_channels
- self.dilated_conv = nn.Conv1d(
- residual_channels,
- 2 * residual_channels,
- kernel_size=3,
- padding=dilation,
- dilation=dilation
- )
- self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
- self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1)
- self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1)
-
- def forward(self, x, conditioner, diffusion_step):
- diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
- conditioner = self.conditioner_projection(conditioner)
- y = x + diffusion_step
-
- y = self.dilated_conv(y) + conditioner
-
- # Using torch.split instead of torch.chunk to avoid using onnx::Slice
- gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
- y = torch.sigmoid(gate) * torch.tanh(filter)
-
- y = self.output_projection(y)
-
- # Using torch.split instead of torch.chunk to avoid using onnx::Slice
- residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
- return (x + residual) / math.sqrt(2.0), skip
-
-
-class WaveNet(nn.Module):
- def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
- super().__init__()
- self.input_projection = Conv1d(in_dims, n_chans, 1)
- self.diffusion_embedding = SinusoidalPosEmb(n_chans)
- self.mlp = nn.Sequential(
- nn.Linear(n_chans, n_chans * 4),
- Mish(),
- nn.Linear(n_chans * 4, n_chans)
- )
- self.residual_layers = nn.ModuleList([
- ResidualBlock(
- encoder_hidden=n_hidden,
- residual_channels=n_chans,
- dilation=1
- )
- for i in range(n_layers)
- ])
- self.skip_projection = Conv1d(n_chans, n_chans, 1)
- self.output_projection = Conv1d(n_chans, in_dims, 1)
- nn.init.zeros_(self.output_projection.weight)
-
- def forward(self, spec, diffusion_step, cond):
- """
- :param spec: [B, 1, M, T]
- :param diffusion_step: [B, 1]
- :param cond: [B, M, T]
- :return:
- """
- x = spec.squeeze(1)
- x = self.input_projection(x) # [B, residual_channel, T]
-
- x = F.relu(x)
- diffusion_step = self.diffusion_embedding(diffusion_step)
- diffusion_step = self.mlp(diffusion_step)
- skip = []
- for layer in self.residual_layers:
- x, skip_connection = layer(x, cond, diffusion_step)
- skip.append(skip_connection)
-
- x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
- x = self.skip_projection(x)
- x = F.relu(x)
- x = self.output_projection(x) # [B, mel_bins, T]
- return x[:, None, :, :]
diff --git a/inference/infer_tool.py b/inference/infer_tool.py
index 6cdeb51f4e36f2676f7f6d2c2828ef51cac4688e..8e47d5efc5e2f33e99602b4fd1abcc8cbcab5128 100644
--- a/inference/infer_tool.py
+++ b/inference/infer_tool.py
@@ -1,27 +1,24 @@
+import gc
import hashlib
import io
import json
import logging
import os
+import pickle
import time
from pathlib import Path
-from inference import slicer
-import gc
import librosa
import numpy as np
+
# import onnxruntime
import soundfile
import torch
import torchaudio
-import cluster
import utils
+from inference import slicer
from models import SynthesizerTrn
-import pickle
-
-from diffusion.unit2mel import load_model_vocoder
-import yaml
logging.getLogger('matplotlib').setLevel(logging.WARNING)
@@ -142,53 +139,26 @@ class Svc(object):
self.dev = torch.device(device)
self.net_g_ms = None
if not self.only_diffusion:
- self.hps_ms = utils.get_hparams_from_file(config_path)
+ self.hps_ms = utils.get_hparams_from_file(config_path, True)
self.target_sample = self.hps_ms.data.sampling_rate
self.hop_size = self.hps_ms.data.hop_length
self.spk2id = self.hps_ms.spk
- try:
- self.vol_embedding = self.hps_ms.model.vol_embedding
- except Exception as e:
- self.vol_embedding = False
- try:
- self.speech_encoder = self.hps_ms.model.speech_encoder
- except Exception as e:
- self.speech_encoder = 'vec768l12'
+ self.unit_interpolate_mode = self.hps_ms.data.unit_interpolate_mode if self.hps_ms.data.unit_interpolate_mode is not None else 'left'
+ self.vol_embedding = self.hps_ms.model.vol_embedding if self.hps_ms.model.vol_embedding is not None else False
+ self.speech_encoder = self.hps_ms.model.speech_encoder if self.hps_ms.model.speech_encoder is not None else 'vec768l12'
self.nsf_hifigan_enhance = nsf_hifigan_enhance
- if self.shallow_diffusion or self.only_diffusion:
- if os.path.exists(diffusion_model_path) and os.path.exists(diffusion_model_path):
- self.diffusion_model, self.vocoder, self.diffusion_args = load_model_vocoder(diffusion_model_path,
- self.dev,
- config_path=diffusion_config_path)
- if self.only_diffusion:
- self.target_sample = self.diffusion_args.data.sampling_rate
- self.hop_size = self.diffusion_args.data.block_size
- self.spk2id = self.diffusion_args.spk
- self.speech_encoder = self.diffusion_args.data.encoder
- if spk_mix_enable:
- self.diffusion_model.init_spkmix(len(self.spk2id))
- else:
- print("No diffusion model or config found. Shallow diffusion mode will False")
- self.shallow_diffusion = self.only_diffusion = False
# load hubert and model
self.load_model(spk_mix_enable)
- # self.hubert_model = utils.get_speech_encoder(self.speech_encoder, device=self.dev) // ram optimize
+ # self.hubert_model = utils.get_speech_encoder(self.speech_encoder, device=self.dev)
self.volume_extractor = utils.Volume_Extractor(self.hop_size)
- if os.path.exists(cluster_model_path):
- if self.feature_retrieval:
- with open(cluster_model_path, "rb") as f:
- self.cluster_model = pickle.load(f)
- self.big_npy = None
- self.now_spk_id = -1
- else:
- self.cluster_model = cluster.get_cluster_model(cluster_model_path)
- else:
- self.feature_retrieval = False
- if self.shallow_diffusion: self.nsf_hifigan_enhance = False
+ self.feature_retrieval = False
+
+ if self.shallow_diffusion:
+ self.nsf_hifigan_enhance = False
if self.nsf_hifigan_enhance:
from modules.enhancer import Enhancer
self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model', device=self.dev)
@@ -200,6 +170,7 @@ class Svc(object):
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
**self.hps_ms.model)
_ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
+ self.dtype = list(self.net_g_ms.parameters())[0].dtype
if "half" in self.net_g_path and torch.cuda.is_available():
_ = self.net_g_ms.half().eval().to(self.dev)
else:
@@ -209,11 +180,13 @@ class Svc(object):
def get_unit_f0(self, wav, tran, cluster_infer_ratio, speaker, f0_filter, f0_predictor, cr_threshold=0.05):
- f0_predictor_object = utils.get_f0_predictor(f0_predictor, hop_length=self.hop_size,
- sampling_rate=self.target_sample, device=self.dev,
- threshold=cr_threshold)
+ if not hasattr(self,
+ "f0_predictor_object") or self.f0_predictor_object is None or f0_predictor != self.f0_predictor_object.name:
+ self.f0_predictor_object = utils.get_f0_predictor(f0_predictor, hop_length=self.hop_size,
+ sampling_rate=self.target_sample, device=self.dev,
+ threshold=cr_threshold)
+ f0, uv = self.f0_predictor_object.compute_f0_uv(wav)
- f0, uv = f0_predictor_object.compute_f0_uv(wav)
if f0_filter and sum(f0) == 0:
raise F0FilterException("No voice detected")
f0 = torch.FloatTensor(f0).to(self.dev)
@@ -223,36 +196,13 @@ class Svc(object):
f0 = f0.unsqueeze(0)
uv = uv.unsqueeze(0)
- wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
- wav16k = torch.from_numpy(wav16k).to(self.dev)
+ wav = torch.from_numpy(wav).to(self.dev)
+ if not hasattr(self, "audio16k_resample_transform"):
+ self.audio16k_resample_transform = torchaudio.transforms.Resample(self.target_sample, 16000).to(self.dev)
+ wav16k = self.audio16k_resample_transform(wav[None, :])[0]
+
c = self.hubert_model.encoder(wav16k)
- c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
-
- if cluster_infer_ratio != 0:
- if self.feature_retrieval:
- speaker_id = self.spk2id.get(speaker)
- if speaker_id is None:
- raise RuntimeError("The name you entered is not in the speaker list!")
- if not speaker_id and type(speaker) is int:
- if len(self.spk2id.__dict__) >= speaker:
- speaker_id = speaker
- feature_index = self.cluster_model[speaker_id]
- feat_np = c.transpose(0, 1).cpu().numpy()
- if self.big_npy is None or self.now_spk_id != speaker_id:
- self.big_npy = feature_index.reconstruct_n(0, feature_index.ntotal)
- self.now_spk_id = speaker_id
- print("starting feature retrieval...")
- score, ix = feature_index.search(feat_np, k=8)
- weight = np.square(1 / score)
- weight /= weight.sum(axis=1, keepdims=True)
- npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
- c = cluster_infer_ratio * npy + (1 - cluster_infer_ratio) * feat_np
- c = torch.FloatTensor(c).to(self.dev).transpose(0, 1)
- print("end feature retrieval...")
- else:
- cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
- cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
- c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1], self.unit_interpolate_mode)
c = c.unsqueeze(0)
return c, f0, uv
@@ -271,7 +221,11 @@ class Svc(object):
second_encoding=False,
loudness_envelope_adjustment=1
):
- wav, sr = librosa.load(raw_path, sr=self.target_sample)
+ torchaudio.set_audio_backend("soundfile")
+ wav, sr = torchaudio.load(raw_path)
+ if not hasattr(self, "audio_resample_transform") or self.audio16k_resample_transform.orig_freq != sr:
+ self.audio_resample_transform = torchaudio.transforms.Resample(sr, self.target_sample)
+ wav = self.audio_resample_transform(wav).numpy()[0]
if spk_mix:
c, f0, uv = self.get_unit_f0(wav, tran, 0, None, f0_filter, f0_predictor, cr_threshold=cr_threshold)
n_frames = f0.size(1)
@@ -287,8 +241,9 @@ class Svc(object):
c, f0, uv = self.get_unit_f0(wav, tran, cluster_infer_ratio, speaker, f0_filter, f0_predictor,
cr_threshold=cr_threshold)
n_frames = f0.size(1)
- if "half" in self.net_g_path and torch.cuda.is_available():
- c = c.half()
+ c = c.to(self.dtype)
+ f0 = f0.to(self.dtype)
+ uv = uv.to(self.dtype)
with torch.no_grad():
start = time.time()
vol = None
@@ -302,17 +257,22 @@ class Svc(object):
else:
audio = torch.FloatTensor(wav).to(self.dev)
audio_mel = None
+ if self.dtype != torch.float32:
+ c = c.to(torch.float32)
+ f0 = f0.to(torch.float32)
+ uv = uv.to(torch.float32)
if self.only_diffusion or self.shallow_diffusion:
- vol = self.volume_extractor.extract(audio[None, :])[None, :, None].to(self.dev) if vol == None else vol[
+ vol = self.volume_extractor.extract(audio[None, :])[None, :, None].to(self.dev) if vol is None else vol[
:,
:,
None]
if self.shallow_diffusion and second_encoding:
- audio16k = librosa.resample(audio.detach().cpu().numpy(), orig_sr=self.target_sample,
- target_sr=16000)
- audio16k = torch.from_numpy(audio16k).to(self.dev)
+ if not hasattr(self, "audio16k_resample_transform"):
+ self.audio16k_resample_transform = torchaudio.transforms.Resample(self.target_sample, 16000).to(
+ self.dev)
+ audio16k = self.audio16k_resample_transform(audio[None, :])[0]
c = self.hubert_model.encoder(audio16k)
- c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1], self.unit_interpolate_mode)
f0 = f0[:, :, None]
c = c.transpose(-1, -2)
audio_mel = self.diffusion_model(
@@ -461,7 +421,8 @@ class Svc(object):
datas = [data]
for k, dat in enumerate(datas):
per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds != 0 else length
- if clip_seconds != 0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
+ if clip_seconds != 0:
+ print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
# padd
pad_len = int(audio_sr * pad_seconds)
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
@@ -497,51 +458,3 @@ class Svc(object):
return np.array(audio)
-class RealTimeVC:
- def __init__(self):
- self.last_chunk = None
- self.last_o = None
- self.chunk_len = 16000 # chunk length
- self.pre_len = 3840 # cross fade length, multiples of 640
-
- # Input and output are 1-dimensional numpy waveform arrays
-
- def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path,
- cluster_infer_ratio=0,
- auto_predict_f0=False,
- noice_scale=0.4,
- f0_filter=False):
-
- import maad
- audio, sr = torchaudio.load(input_wav_path)
- audio = audio.cpu().numpy()[0]
- temp_wav = io.BytesIO()
- if self.last_chunk is None:
- input_wav_path.seek(0)
-
- audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path,
- cluster_infer_ratio=cluster_infer_ratio,
- auto_predict_f0=auto_predict_f0,
- noice_scale=noice_scale,
- f0_filter=f0_filter)
-
- audio = audio.cpu().numpy()
- self.last_chunk = audio[-self.pre_len:]
- self.last_o = audio
- return audio[-self.chunk_len:]
- else:
- audio = np.concatenate([self.last_chunk, audio])
- soundfile.write(temp_wav, audio, sr, format="wav")
- temp_wav.seek(0)
-
- audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav,
- cluster_infer_ratio=cluster_infer_ratio,
- auto_predict_f0=auto_predict_f0,
- noice_scale=noice_scale,
- f0_filter=f0_filter)
-
- audio = audio.cpu().numpy()
- ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
- self.last_chunk = audio[-self.pre_len:]
- self.last_o = audio
- return ret[self.chunk_len:2 * self.chunk_len]
diff --git a/inference/infer_tool_grad.py b/inference/infer_tool_grad.py
index 561c22c55e4f0527d038bbce3cef317393ded542..136e9048ec73e0d60f32fde80acc349b97eff366 100644
--- a/inference/infer_tool_grad.py
+++ b/inference/infer_tool_grad.py
@@ -1,22 +1,18 @@
-import hashlib
-import json
+import io
import logging
import os
-import time
-from pathlib import Path
-import io
+
import librosa
-import maad
import numpy as np
-from inference import slicer
import parselmouth
import soundfile
import torch
import torchaudio
-from hubert import hubert_model
import utils
+from inference import slicer
from models import SynthesizerTrn
+
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
@@ -93,7 +89,7 @@ class VitsSvc(object):
def set_device(self, device):
self.device = torch.device(device)
self.hubert_soft.to(self.device)
- if self.SVCVITS != None:
+ if self.SVCVITS is not None:
self.SVCVITS.to(self.device)
def loadCheckpoint(self, path):
diff --git a/inference/slicer.py b/inference/slicer.py
index 05b3df0842d56ad700bfed931e90a988b2149a34..b05840bcf6bdced0b6e2adbecb1a1dd5b3dee462 100644
--- a/inference/slicer.py
+++ b/inference/slicer.py
@@ -117,8 +117,8 @@ class Slicer:
return chunk_dict
-def cut(input_audio, db_thresh=-30, min_len=5000):
- audio, sr = librosa.load(input_audio, sr=None)
+def cut(audio_path, db_thresh=-30, min_len=5000):
+ audio, sr = librosa.load(audio_path, sr=None)
slicer = Slicer(
sr=sr,
threshold=db_thresh,
diff --git a/inference_main.py b/inference_main.py
deleted file mode 100644
index d3311757984e262658cc406f8d28febbe9620844..0000000000000000000000000000000000000000
--- a/inference_main.py
+++ /dev/null
@@ -1,181 +0,0 @@
-import io
-import logging
-import time
-from pathlib import Path
-from spkmix import spk_mix_map
-import librosa
-import matplotlib.pyplot as plt
-import numpy as np
-import soundfile
-from inference import infer_tool
-from inference import slicer
-from inference.infer_tool import Svc
-
-logging.getLogger('numba').setLevel(logging.WARNING)
-chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
-
-
-def main():
- import argparse
-
- parser = argparse.ArgumentParser(description='sovits4 inference')
-
- # 一定要设置的部分
- parser.add_argument('-m', '--model_path', type=str, default="logs/44k/", help='模型路径')
- parser.add_argument('-c', '--config_path', type=str, default="configs/", help='配置文件路径')
- parser.add_argument('-cl', '--clip', type=float, default=0, help='音频强制切片,默认0为自动切片,单位为秒/s')
- parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["test.wav"],
- help='wav文件名列表,放在raw文件夹下')
- parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
- parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['buyizi'], help='合成目标说话人名称')
-
- # 可选项部分
- parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,
- help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
- parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt",
- help='聚类模型或特征检索索引路径,如果没有训练聚类或特征检索则随便填')
- parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0,
- help='聚类方案或特征检索占比,范围0-1,若没有训练聚类模型或特征检索则默认0即可')
- parser.add_argument('-lg', '--linear_gradient', type=float, default=0,
- help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒')
- parser.add_argument('-f0p', '--f0_predictor', type=str, default="harvest",
- help='选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)')
- parser.add_argument('-eh', '--enhance', action='store_true', default=False,
- help='是否使用NSF_HIFIGAN增强器,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭')
- parser.add_argument('-shd', '--shallow_diffusion', action='store_true', default=False,
- help='是否使用浅层扩散,使用后可解决一部分电音问题,默认关闭,该选项打开时,NSF_HIFIGAN增强器将会被禁止')
- parser.add_argument('-usm', '--use_spk_mix', action='store_true', default=False, help='是否使用角色融合')
- parser.add_argument('-lea', '--loudness_envelope_adjustment', type=float, default=1,
- help='输入源响度包络替换输出响度包络融合比例,越靠近1越使用输出响度包络')
- parser.add_argument('-fr', '--feature_retrieval', action='store_true', default=False,
- help='是否使用特征检索,如果使用聚类模型将被禁用,且cm与cr参数将会变成特征检索的索引路径与混合比例')
-
- # 浅扩散设置
- parser.add_argument('-dm', '--diffusion_model_path', type=str, default="logs/44k/diffusion/model_0.pt",
- help='扩散模型路径')
- parser.add_argument('-dc', '--diffusion_config_path', type=str, default="logs/44k/diffusion/config.yaml",
- help='扩散模型配置文件路径')
- parser.add_argument('-ks', '--k_step', type=int, default=100, help='扩散步数,越大越接近扩散模型的结果,默认100')
- parser.add_argument('-se', '--second_encoding', action='store_true', default=False,
- help='二次编码,浅扩散前会对原始音频进行二次编码,玄学选项,有时候效果好,有时候效果差')
- parser.add_argument('-od', '--only_diffusion', action='store_true', default=False,
- help='纯扩散模式,该模式不会加载sovits模型,以扩散模型推理')
-
- # 不用动的部分
- parser.add_argument('-sd', '--slice_db', type=int, default=-40,
- help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
- parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
- parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
- parser.add_argument('-p', '--pad_seconds', type=float, default=0.5,
- help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
- parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
- parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75,
- help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭')
- parser.add_argument('-eak', '--enhancer_adaptive_key', type=int, default=0,
- help='使增强器适应更高的音域(单位为半音数)|默认为0')
- parser.add_argument('-ft', '--f0_filter_threshold', type=float, default=0.05,
- help='F0过滤阈值,只有使用crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音')
-
- def preprocess_args(args1):
- spk1 = args1.spk_list[0]
- args1.model_path += f"{spk1}.pth"
- args1.config_path += f"config_{spk1}.json"
- args1.clip = 30
-
- if spk1 == 'tomori':
- args1.feature_retrieval = True
- args1.cluster_model_path = "logs/44k/tomori_index.pkl"
- args1.cluster_infer_ratio = 0.5
- args1.f0_predictor = 'crepe'
-
- return args1
-
- args = parser.parse_args()
- args = preprocess_args(args)
-
- clean_names = args.clean_names
- trans = args.trans
- spk_list = args.spk_list
- slice_db = args.slice_db
- wav_format = args.wav_format
- auto_predict_f0 = args.auto_predict_f0
- cluster_infer_ratio = args.cluster_infer_ratio
- noice_scale = args.noice_scale
- pad_seconds = args.pad_seconds
- clip = args.clip
- lg = args.linear_gradient
- lgr = args.linear_gradient_retain
- f0p = args.f0_predictor
- enhance = args.enhance
- enhancer_adaptive_key = args.enhancer_adaptive_key
- cr_threshold = args.f0_filter_threshold
- diffusion_model_path = args.diffusion_model_path
- diffusion_config_path = args.diffusion_config_path
- k_step = args.k_step
- only_diffusion = args.only_diffusion
- shallow_diffusion = args.shallow_diffusion
- use_spk_mix = args.use_spk_mix
- second_encoding = args.second_encoding
- loudness_envelope_adjustment = args.loudness_envelope_adjustment
-
- svc_model = Svc(args.model_path,
- args.config_path,
- args.device,
- args.cluster_model_path,
- enhance,
- diffusion_model_path,
- diffusion_config_path,
- shallow_diffusion,
- only_diffusion,
- use_spk_mix,
- args.feature_retrieval)
-
- infer_tool.mkdir(["raw", "results"])
-
- if len(spk_mix_map) <= 1:
- use_spk_mix = False
- if use_spk_mix:
- spk_list = [spk_mix_map]
-
- infer_tool.fill_a_to_b(trans, clean_names)
- for clean_name, tran in zip(clean_names, trans):
- raw_audio_path = f"raw/{clean_name}"
- if "." not in raw_audio_path:
- raw_audio_path += ".wav"
- infer_tool.format_wav(raw_audio_path)
- for spk in spk_list:
- kwarg = {
- "raw_audio_path": raw_audio_path,
- "spk": spk,
- "tran": tran,
- "slice_db": slice_db,
- "cluster_infer_ratio": cluster_infer_ratio,
- "auto_predict_f0": auto_predict_f0,
- "noice_scale": noice_scale,
- "pad_seconds": pad_seconds,
- "clip_seconds": clip,
- "lg_num": lg,
- "lgr_num": lgr,
- "f0_predictor": f0p,
- "enhancer_adaptive_key": enhancer_adaptive_key,
- "cr_threshold": cr_threshold,
- "k_step": k_step,
- "use_spk_mix": use_spk_mix,
- "second_encoding": second_encoding,
- "loudness_envelope_adjustment": loudness_envelope_adjustment
- }
- audio = svc_model.slice_inference(**kwarg)
- key = "auto" if auto_predict_f0 else f"{tran}key"
- cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
- isdiffusion = "sovits"
- if shallow_diffusion: isdiffusion = "sovdiff"
- if only_diffusion: isdiffusion = "diff"
- if use_spk_mix:
- spk = "spk_mix"
- res_path = f'results/{clean_name}_{key}_{spk}{cluster_name}_{isdiffusion}.{wav_format}'
- soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
- svc_model.clear_empty()
-
-
-if __name__ == '__main__':
- main()
diff --git a/models.py b/models.py
index ac40c3cda6b5ef351049b0348711f90e2985ce1e..24338fa2c1f6c15e60f5f341c7e3df2301f74eb8 100644
--- a/models.py
+++ b/models.py
@@ -1,20 +1,17 @@
-import copy
-import math
import torch
from torch import nn
+from torch.nn import Conv1d, Conv2d
from torch.nn import functional as F
+from torch.nn.utils import spectral_norm, weight_norm
import modules.attentions as attentions
import modules.commons as commons
import modules.modules as modules
-
-from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
-from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
-
import utils
-from modules.commons import init_weights, get_padding
+from modules.commons import get_padding
from utils import f0_to_coarse
+
class ResidualCouplingBlock(nn.Module):
def __init__(self,
channels,
@@ -23,7 +20,9 @@ class ResidualCouplingBlock(nn.Module):
dilation_rate,
n_layers,
n_flows=4,
- gin_channels=0):
+ gin_channels=0,
+ share_parameter=False
+ ):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
@@ -34,10 +33,53 @@ class ResidualCouplingBlock(nn.Module):
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
+
+ self.wn = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=gin_channels) if share_parameter else None
+
for i in range(n_flows):
self.flows.append(
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
- gin_channels=gin_channels, mean_only=True))
+ gin_channels=gin_channels, mean_only=True, wn_sharing_parameter=self.wn))
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+class TransformerCouplingBlock(nn.Module):
+ def __init__(self,
+ channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ n_flows=4,
+ gin_channels=0,
+ share_parameter=False
+ ):
+
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+
+ self.wn = attentions.FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = self.gin_channels) if share_parameter else None
+
+ for i in range(n_flows):
+ self.flows.append(
+ modules.TransformerCouplingLayer(channels, hidden_channels, kernel_size, n_layers, n_heads, p_dropout, filter_channels, mean_only=True, wn_sharing_parameter=self.wn, gin_channels = self.gin_channels))
self.flows.append(modules.Flip())
def forward(self, x, x_mask, g=None, reverse=False):
@@ -125,7 +167,7 @@ class DiscriminatorP(torch.nn.Module):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
@@ -160,7 +202,7 @@ class DiscriminatorP(torch.nn.Module):
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
@@ -321,6 +363,12 @@ class SynthesizerTrn(nn.Module):
sampling_rate=44100,
vol_embedding=False,
vocoder_name = "nsf-hifigan",
+ use_depthwise_conv = False,
+ use_automatic_f0_prediction = True,
+ flow_share_parameter = False,
+ n_flow_layer = 4,
+ n_layers_trans_flow = 3,
+ use_transformer_flow = False,
**kwargs):
super().__init__()
@@ -343,6 +391,9 @@ class SynthesizerTrn(nn.Module):
self.ssl_dim = ssl_dim
self.vol_embedding = vol_embedding
self.emb_g = nn.Embedding(n_speakers, gin_channels)
+ self.use_depthwise_conv = use_depthwise_conv
+ self.use_automatic_f0_prediction = use_automatic_f0_prediction
+ self.n_layers_trans_flow = n_layers_trans_flow
if vol_embedding:
self.emb_vol = nn.Linear(1, hidden_channels)
@@ -367,9 +418,11 @@ class SynthesizerTrn(nn.Module):
"upsample_initial_channel": upsample_initial_channel,
"upsample_kernel_sizes": upsample_kernel_sizes,
"gin_channels": gin_channels,
+ "use_depthwise_conv":use_depthwise_conv
}
-
+ modules.set_Conv1dModel(self.use_depthwise_conv)
+
if vocoder_name == "nsf-hifigan":
from vdecoder.hifigan.models import Generator
self.dec = Generator(h=hps)
@@ -382,17 +435,21 @@ class SynthesizerTrn(nn.Module):
self.dec = Generator(h=hps)
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
- self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
- self.f0_decoder = F0Decoder(
- 1,
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout,
- spk_channels=gin_channels
- )
+ if use_transformer_flow:
+ self.flow = TransformerCouplingBlock(inter_channels, hidden_channels, filter_channels, n_heads, n_layers_trans_flow, 5, p_dropout, n_flow_layer, gin_channels=gin_channels, share_parameter= flow_share_parameter)
+ else:
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, n_flow_layer, gin_channels=gin_channels, share_parameter= flow_share_parameter)
+ if self.use_automatic_f0_prediction:
+ self.f0_decoder = F0Decoder(
+ 1,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ spk_channels=gin_channels
+ )
self.emb_uv = nn.Embedding(2, hidden_channels)
self.character_mix = False
@@ -407,17 +464,21 @@ class SynthesizerTrn(nn.Module):
g = self.emb_g(g).transpose(1,2)
# vol proj
- vol = self.emb_vol(vol[:,:,None]).transpose(1,2) if vol!=None and self.vol_embedding else 0
+ vol = self.emb_vol(vol[:,:,None]).transpose(1,2) if vol is not None and self.vol_embedding else 0
# ssl prenet
x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2) + vol
-
+
# f0 predict
- lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
- norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
- pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
-
+ if self.use_automatic_f0_prediction:
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
+ else:
+ lf0 = 0
+ norm_lf0 = 0
+ pred_lf0 = 0
# encoder
z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
@@ -431,6 +492,7 @@ class SynthesizerTrn(nn.Module):
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
+ @torch.no_grad()
def infer(self, c, f0, uv, g=None, noice_scale=0.35, seed=52468, predict_f0=False, vol = None):
if c.device == torch.device("cuda"):
@@ -452,11 +514,13 @@ class SynthesizerTrn(nn.Module):
x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
# vol proj
- vol = self.emb_vol(vol[:,:,None]).transpose(1,2) if vol!=None and self.vol_embedding else 0
-
- x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2) + vol
- if predict_f0:
+ vol = self.emb_vol(vol[:,:,None]).transpose(1,2) if vol is not None and self.vol_embedding else 0
+
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2) + vol
+
+
+ if self.use_automatic_f0_prediction and predict_f0:
lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
diff --git a/models/ogloc/kmeans_ogloc.pt b/models/ogloc/kmeans_ogloc.pt
deleted file mode 100644
index 5ef64e6d8c54437ee628f8f02736c8a5b1e01756..0000000000000000000000000000000000000000
--- a/models/ogloc/kmeans_ogloc.pt
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:2dc2d3c53272a0f1caeee0863c47484ad83592a2780246b98bda77284440c95b
-size 31339961
diff --git a/modules/DSConv.py b/modules/DSConv.py
new file mode 100644
index 0000000000000000000000000000000000000000..44c2bf60e9cd2b837ca95fb6436768782057014a
--- /dev/null
+++ b/modules/DSConv.py
@@ -0,0 +1,76 @@
+import torch.nn as nn
+from torch.nn.utils import remove_weight_norm, weight_norm
+
+
+class Depthwise_Separable_Conv1D(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ kernel_size,
+ stride = 1,
+ padding = 0,
+ dilation = 1,
+ bias = True,
+ padding_mode = 'zeros', # TODO: refine this type
+ device=None,
+ dtype=None
+ ):
+ super().__init__()
+ self.depth_conv = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels,stride = stride,padding=padding,dilation=dilation,bias=bias,padding_mode=padding_mode,device=device,dtype=dtype)
+ self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, device=device,dtype=dtype)
+
+ def forward(self, input):
+ return self.point_conv(self.depth_conv(input))
+
+ def weight_norm(self):
+ self.depth_conv = weight_norm(self.depth_conv, name = 'weight')
+ self.point_conv = weight_norm(self.point_conv, name = 'weight')
+
+ def remove_weight_norm(self):
+ self.depth_conv = remove_weight_norm(self.depth_conv, name = 'weight')
+ self.point_conv = remove_weight_norm(self.point_conv, name = 'weight')
+
+class Depthwise_Separable_TransposeConv1D(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ kernel_size,
+ stride = 1,
+ padding = 0,
+ output_padding = 0,
+ bias = True,
+ dilation = 1,
+ padding_mode = 'zeros', # TODO: refine this type
+ device=None,
+ dtype=None
+ ):
+ super().__init__()
+ self.depth_conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels,stride = stride,output_padding=output_padding,padding=padding,dilation=dilation,bias=bias,padding_mode=padding_mode,device=device,dtype=dtype)
+ self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, device=device,dtype=dtype)
+
+ def forward(self, input):
+ return self.point_conv(self.depth_conv(input))
+
+ def weight_norm(self):
+ self.depth_conv = weight_norm(self.depth_conv, name = 'weight')
+ self.point_conv = weight_norm(self.point_conv, name = 'weight')
+
+ def remove_weight_norm(self):
+ remove_weight_norm(self.depth_conv, name = 'weight')
+ remove_weight_norm(self.point_conv, name = 'weight')
+
+
+def weight_norm_modules(module, name = 'weight', dim = 0):
+ if isinstance(module,Depthwise_Separable_Conv1D) or isinstance(module,Depthwise_Separable_TransposeConv1D):
+ module.weight_norm()
+ return module
+ else:
+ return weight_norm(module,name,dim)
+
+def remove_weight_norm_modules(module, name = 'weight'):
+ if isinstance(module,Depthwise_Separable_Conv1D) or isinstance(module,Depthwise_Separable_TransposeConv1D):
+ module.remove_weight_norm()
+ else:
+ remove_weight_norm(module,name)
\ No newline at end of file
diff --git a/modules/F0Predictor/CrepeF0Predictor.py b/modules/F0Predictor/CrepeF0Predictor.py
index e0052881b9b7b3aa373ebf69eb553815a564f610..c0854b64ed3bff96ed3381a7ef666c784aefd995 100644
--- a/modules/F0Predictor/CrepeF0Predictor.py
+++ b/modules/F0Predictor/CrepeF0Predictor.py
@@ -1,7 +1,9 @@
-from modules.F0Predictor.F0Predictor import F0Predictor
-from modules.F0Predictor.crepe import CrepePitchExtractor
import torch
+from modules.F0Predictor.crepe import CrepePitchExtractor
+from modules.F0Predictor.F0Predictor import F0Predictor
+
+
class CrepeF0Predictor(F0Predictor):
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,device=None,sampling_rate=44100,threshold=0.05,model="full"):
self.F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device,threshold=threshold,model=model)
@@ -11,6 +13,7 @@ class CrepeF0Predictor(F0Predictor):
self.device = device
self.threshold = threshold
self.sampling_rate = sampling_rate
+ self.name = "crepe"
def compute_f0(self,wav,p_len=None):
x = torch.FloatTensor(wav).to(self.device)
diff --git a/modules/F0Predictor/DioF0Predictor.py b/modules/F0Predictor/DioF0Predictor.py
index 4ab27de23cae4dbc282e30f84501afebd1a37518..178dd2e8a02b79e5af113300f00d6a4dc2fb2a07 100644
--- a/modules/F0Predictor/DioF0Predictor.py
+++ b/modules/F0Predictor/DioF0Predictor.py
@@ -1,6 +1,8 @@
-from modules.F0Predictor.F0Predictor import F0Predictor
-import pyworld
import numpy as np
+import pyworld
+
+from modules.F0Predictor.F0Predictor import F0Predictor
+
class DioF0Predictor(F0Predictor):
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
@@ -8,44 +10,31 @@ class DioF0Predictor(F0Predictor):
self.f0_min = f0_min
self.f0_max = f0_max
self.sampling_rate = sampling_rate
+ self.name = "dio"
def interpolate_f0(self,f0):
'''
对F0进行插值处理
'''
+ vuv_vector = np.zeros_like(f0, dtype=np.float32)
+ vuv_vector[f0 > 0.0] = 1.0
+ vuv_vector[f0 <= 0.0] = 0.0
- data = np.reshape(f0, (f0.size, 1))
-
- vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
- vuv_vector[data > 0.0] = 1.0
- vuv_vector[data <= 0.0] = 0.0
-
- ip_data = data
-
- frame_number = data.size
- last_value = 0.0
- for i in range(frame_number):
- if data[i] <= 0.0:
- j = i + 1
- for j in range(i + 1, frame_number):
- if data[j] > 0.0:
- break
- if j < frame_number - 1:
- if last_value > 0.0:
- step = (data[j] - data[i - 1]) / float(j - i)
- for k in range(i, j):
- ip_data[k] = data[i - 1] + step * (k - i + 1)
- else:
- for k in range(i, j):
- ip_data[k] = data[j]
- else:
- for k in range(i, frame_number):
- ip_data[k] = last_value
- else:
- ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
- last_value = data[i]
-
- return ip_data[:,0], vuv_vector[:,0]
+ nzindex = np.nonzero(f0)[0]
+ data = f0[nzindex]
+ nzindex = nzindex.astype(np.float32)
+ time_org = self.hop_length / self.sampling_rate * nzindex
+ time_frame = np.arange(f0.shape[0]) * self.hop_length / self.sampling_rate
+
+ if data.shape[0] <= 0:
+ return np.zeros(f0.shape[0], dtype=np.float32),vuv_vector
+
+ if data.shape[0] == 1:
+ return np.ones(f0.shape[0], dtype=np.float32) * f0[0],vuv_vector
+
+ f0 = np.interp(time_frame, time_org, data, left=data[0], right=data[-1])
+
+ return f0,vuv_vector
def resize_f0(self,x, target_len):
source = np.array(x)
diff --git a/modules/F0Predictor/FCPEF0Predictor.py b/modules/F0Predictor/FCPEF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..1096e040110d5f526e388d989c08b25937eac8f5
--- /dev/null
+++ b/modules/F0Predictor/FCPEF0Predictor.py
@@ -0,0 +1,109 @@
+from typing import Union
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+from modules.F0Predictor.F0Predictor import F0Predictor
+
+from .fcpe.model import FCPEInfer
+
+
+class FCPEF0Predictor(F0Predictor):
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100,
+ threshold=0.05):
+ self.fcpe = FCPEInfer(model_path="pretrain/fcpe.pt", device=device, dtype=dtype)
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ if device is None:
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ else:
+ self.device = device
+ self.threshold = threshold
+ self.sampling_rate = sampling_rate
+ self.dtype = dtype
+ self.name = "fcpe"
+
+ def repeat_expand(
+ self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
+ ):
+ ndim = content.ndim
+
+ if content.ndim == 1:
+ content = content[None, None]
+ elif content.ndim == 2:
+ content = content[None]
+
+ assert content.ndim == 3
+
+ is_np = isinstance(content, np.ndarray)
+ if is_np:
+ content = torch.from_numpy(content)
+
+ results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
+
+ if is_np:
+ results = results.numpy()
+
+ if ndim == 1:
+ return results[0, 0]
+ elif ndim == 2:
+ return results[0]
+
+ def post_process(self, x, sampling_rate, f0, pad_to):
+ if isinstance(f0, np.ndarray):
+ f0 = torch.from_numpy(f0).float().to(x.device)
+
+ if pad_to is None:
+ return f0
+
+ f0 = self.repeat_expand(f0, pad_to)
+
+ vuv_vector = torch.zeros_like(f0)
+ vuv_vector[f0 > 0.0] = 1.0
+ vuv_vector[f0 <= 0.0] = 0.0
+
+ # 去掉0频率, 并线性插值
+ nzindex = torch.nonzero(f0).squeeze()
+ f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
+ time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
+ time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
+
+ vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
+
+ if f0.shape[0] <= 0:
+ return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy()
+ if f0.shape[0] == 1:
+ return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[
+ 0]).cpu().numpy(), vuv_vector.cpu().numpy()
+
+ # 大概可以用 torch 重写?
+ f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
+ # vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
+
+ return f0, vuv_vector.cpu().numpy()
+
+ def compute_f0(self, wav, p_len=None):
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
+ if p_len is None:
+ p_len = x.shape[0] // self.hop_length
+ else:
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
+ f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
+ if torch.all(f0 == 0):
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
+ return rtn, rtn
+ return self.post_process(x, self.sampling_rate, f0, p_len)[0]
+
+ def compute_f0_uv(self, wav, p_len=None):
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
+ if p_len is None:
+ p_len = x.shape[0] // self.hop_length
+ else:
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
+ f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
+ if torch.all(f0 == 0):
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
+ return rtn, rtn
+ return self.post_process(x, self.sampling_rate, f0, p_len)
\ No newline at end of file
diff --git a/modules/F0Predictor/HarvestF0Predictor.py b/modules/F0Predictor/HarvestF0Predictor.py
index 122bdbb4c736feb4a8d974eca03df71aede76f69..f36b332f7b42802918ce3e232a6609413394acf9 100644
--- a/modules/F0Predictor/HarvestF0Predictor.py
+++ b/modules/F0Predictor/HarvestF0Predictor.py
@@ -1,6 +1,8 @@
-from modules.F0Predictor.F0Predictor import F0Predictor
-import pyworld
import numpy as np
+import pyworld
+
+from modules.F0Predictor.F0Predictor import F0Predictor
+
class HarvestF0Predictor(F0Predictor):
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
@@ -8,45 +10,31 @@ class HarvestF0Predictor(F0Predictor):
self.f0_min = f0_min
self.f0_max = f0_max
self.sampling_rate = sampling_rate
+ self.name = "harvest"
def interpolate_f0(self,f0):
'''
对F0进行插值处理
'''
+ vuv_vector = np.zeros_like(f0, dtype=np.float32)
+ vuv_vector[f0 > 0.0] = 1.0
+ vuv_vector[f0 <= 0.0] = 0.0
- data = np.reshape(f0, (f0.size, 1))
-
- vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
- vuv_vector[data > 0.0] = 1.0
- vuv_vector[data <= 0.0] = 0.0
-
- ip_data = data
-
- frame_number = data.size
- last_value = 0.0
- for i in range(frame_number):
- if data[i] <= 0.0:
- j = i + 1
- for j in range(i + 1, frame_number):
- if data[j] > 0.0:
- break
- if j < frame_number - 1:
- if last_value > 0.0:
- step = (data[j] - data[i - 1]) / float(j - i)
- for k in range(i, j):
- ip_data[k] = data[i - 1] + step * (k - i + 1)
- else:
- for k in range(i, j):
- ip_data[k] = data[j]
- else:
- for k in range(i, frame_number):
- ip_data[k] = last_value
- else:
- ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
- last_value = data[i]
-
- return ip_data[:,0], vuv_vector[:,0]
+ nzindex = np.nonzero(f0)[0]
+ data = f0[nzindex]
+ nzindex = nzindex.astype(np.float32)
+ time_org = self.hop_length / self.sampling_rate * nzindex
+ time_frame = np.arange(f0.shape[0]) * self.hop_length / self.sampling_rate
+ if data.shape[0] <= 0:
+ return np.zeros(f0.shape[0], dtype=np.float32),vuv_vector
+
+ if data.shape[0] == 1:
+ return np.ones(f0.shape[0], dtype=np.float32) * f0[0],vuv_vector
+
+ f0 = np.interp(time_frame, time_org, data, left=data[0], right=data[-1])
+
+ return f0,vuv_vector
def resize_f0(self,x, target_len):
source = np.array(x)
source[source<0.001] = np.nan
diff --git a/modules/F0Predictor/PMF0Predictor.py b/modules/F0Predictor/PMF0Predictor.py
index ccf4128436c5b7e5a3e720d4597bad0c622d0920..2af3f6e7ee7c5c4e10899f9988e1d9b92aa52157 100644
--- a/modules/F0Predictor/PMF0Predictor.py
+++ b/modules/F0Predictor/PMF0Predictor.py
@@ -1,6 +1,8 @@
-from modules.F0Predictor.F0Predictor import F0Predictor
-import parselmouth
import numpy as np
+import parselmouth
+
+from modules.F0Predictor.F0Predictor import F0Predictor
+
class PMF0Predictor(F0Predictor):
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
@@ -8,45 +10,32 @@ class PMF0Predictor(F0Predictor):
self.f0_min = f0_min
self.f0_max = f0_max
self.sampling_rate = sampling_rate
-
+ self.name = "pm"
def interpolate_f0(self,f0):
'''
对F0进行插值处理
'''
+ vuv_vector = np.zeros_like(f0, dtype=np.float32)
+ vuv_vector[f0 > 0.0] = 1.0
+ vuv_vector[f0 <= 0.0] = 0.0
- data = np.reshape(f0, (f0.size, 1))
-
- vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
- vuv_vector[data > 0.0] = 1.0
- vuv_vector[data <= 0.0] = 0.0
-
- ip_data = data
-
- frame_number = data.size
- last_value = 0.0
- for i in range(frame_number):
- if data[i] <= 0.0:
- j = i + 1
- for j in range(i + 1, frame_number):
- if data[j] > 0.0:
- break
- if j < frame_number - 1:
- if last_value > 0.0:
- step = (data[j] - data[i - 1]) / float(j - i)
- for k in range(i, j):
- ip_data[k] = data[i - 1] + step * (k - i + 1)
- else:
- for k in range(i, j):
- ip_data[k] = data[j]
- else:
- for k in range(i, frame_number):
- ip_data[k] = last_value
- else:
- ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
- last_value = data[i]
+ nzindex = np.nonzero(f0)[0]
+ data = f0[nzindex]
+ nzindex = nzindex.astype(np.float32)
+ time_org = self.hop_length / self.sampling_rate * nzindex
+ time_frame = np.arange(f0.shape[0]) * self.hop_length / self.sampling_rate
+
+ if data.shape[0] <= 0:
+ return np.zeros(f0.shape[0], dtype=np.float32),vuv_vector
+
+ if data.shape[0] == 1:
+ return np.ones(f0.shape[0], dtype=np.float32) * f0[0],vuv_vector
+
+ f0 = np.interp(time_frame, time_org, data, left=data[0], right=data[-1])
+
+ return f0,vuv_vector
- return ip_data[:,0], vuv_vector[:,0]
def compute_f0(self,wav,p_len=None):
x = wav
diff --git a/modules/F0Predictor/RMVPEF0Predictor.py b/modules/F0Predictor/RMVPEF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..9313887be084e99059e6c76fffba323de1f3c835
--- /dev/null
+++ b/modules/F0Predictor/RMVPEF0Predictor.py
@@ -0,0 +1,107 @@
+from typing import Union
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+from modules.F0Predictor.F0Predictor import F0Predictor
+
+from .rmvpe import RMVPE
+
+
+class RMVPEF0Predictor(F0Predictor):
+ def __init__(self,hop_length=512,f0_min=50,f0_max=1100, dtype=torch.float32, device=None,sampling_rate=44100,threshold=0.05):
+ self.rmvpe = RMVPE(model_path="pretrain/rmvpe.pt",dtype=dtype,device=device)
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ if device is None:
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ else:
+ self.device = device
+ self.threshold = threshold
+ self.sampling_rate = sampling_rate
+ self.dtype = dtype
+ self.name = "rmvpe"
+
+ def repeat_expand(
+ self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
+ ):
+ ndim = content.ndim
+
+ if content.ndim == 1:
+ content = content[None, None]
+ elif content.ndim == 2:
+ content = content[None]
+
+ assert content.ndim == 3
+
+ is_np = isinstance(content, np.ndarray)
+ if is_np:
+ content = torch.from_numpy(content)
+
+ results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
+
+ if is_np:
+ results = results.numpy()
+
+ if ndim == 1:
+ return results[0, 0]
+ elif ndim == 2:
+ return results[0]
+
+ def post_process(self, x, sampling_rate, f0, pad_to):
+ if isinstance(f0, np.ndarray):
+ f0 = torch.from_numpy(f0).float().to(x.device)
+
+ if pad_to is None:
+ return f0
+
+ f0 = self.repeat_expand(f0, pad_to)
+
+ vuv_vector = torch.zeros_like(f0)
+ vuv_vector[f0 > 0.0] = 1.0
+ vuv_vector[f0 <= 0.0] = 0.0
+
+ # 去掉0频率, 并线性插值
+ nzindex = torch.nonzero(f0).squeeze()
+ f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
+ time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
+ time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
+
+ vuv_vector = F.interpolate(vuv_vector[None,None,:],size=pad_to)[0][0]
+
+ if f0.shape[0] <= 0:
+ return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(),vuv_vector.cpu().numpy()
+ if f0.shape[0] == 1:
+ return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0]).cpu().numpy() ,vuv_vector.cpu().numpy()
+
+ # 大概可以用 torch 重写?
+ f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
+ #vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
+
+ return f0,vuv_vector.cpu().numpy()
+
+ def compute_f0(self,wav,p_len=None):
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
+ if p_len is None:
+ p_len = x.shape[0]//self.hop_length
+ else:
+ assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
+ f0 = self.rmvpe.infer_from_audio(x,self.sampling_rate,self.threshold)
+ if torch.all(f0 == 0):
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
+ return rtn,rtn
+ return self.post_process(x,self.sampling_rate,f0,p_len)[0]
+
+ def compute_f0_uv(self,wav,p_len=None):
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
+ if p_len is None:
+ p_len = x.shape[0]//self.hop_length
+ else:
+ assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
+ f0 = self.rmvpe.infer_from_audio(x,self.sampling_rate,self.threshold)
+ if torch.all(f0 == 0):
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
+ return rtn,rtn
+ return self.post_process(x,self.sampling_rate,f0,p_len)
\ No newline at end of file
diff --git a/modules/F0Predictor/crepe.py b/modules/F0Predictor/crepe.py
index c6fb45c79bcd306202a2c0282b3d73a8074ced5d..e68f19cb39eb79931926ffd312fb61e30bf39d72 100644
--- a/modules/F0Predictor/crepe.py
+++ b/modules/F0Predictor/crepe.py
@@ -1,14 +1,14 @@
-from typing import Optional,Union
+from typing import Optional, Union
+
try:
from typing import Literal
-except Exception as e:
+except Exception:
from typing_extensions import Literal
import numpy as np
import torch
import torchcrepe
from torch import nn
from torch.nn import functional as F
-import scipy
#from:https://github.com/fishaudio/fish-diffusion
@@ -97,19 +97,19 @@ class BasePitchExtractor:
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
+
+ vuv_vector = F.interpolate(vuv_vector[None,None,:],size=pad_to)[0][0]
if f0.shape[0] <= 0:
- return torch.zeros(pad_to, dtype=torch.float, device=x.device),torch.zeros(pad_to, dtype=torch.float, device=x.device)
-
+ return torch.zeros(pad_to, dtype=torch.float, device=x.device),vuv_vector.cpu().numpy()
if f0.shape[0] == 1:
- return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],torch.ones(pad_to, dtype=torch.float, device=x.device)
+ return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],vuv_vector.cpu().numpy()
# 大概可以用 torch 重写?
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
- vuv_vector = vuv_vector.cpu().numpy()
- vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
+ #vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
- return f0,vuv_vector
+ return f0,vuv_vector.cpu().numpy()
class MaskedAvgPool1d(nn.Module):
@@ -323,7 +323,7 @@ class CrepePitchExtractor(BasePitchExtractor):
else:
pd = torchcrepe.filter.median(pd, 3)
- pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, 512)
+ pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, self.hop_length)
f0 = torchcrepe.threshold.At(self.threshold)(f0, pd)
if self.use_fast_filters:
@@ -334,7 +334,7 @@ class CrepePitchExtractor(BasePitchExtractor):
f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0]
if torch.all(f0 == 0):
- rtn = f0.cpu().numpy() if pad_to==None else np.zeros(pad_to)
+ rtn = f0.cpu().numpy() if pad_to is None else np.zeros(pad_to)
return rtn,rtn
return self.post_process(x, sampling_rate, f0, pad_to)
diff --git a/modules/F0Predictor/fcpe/__init__.py b/modules/F0Predictor/fcpe/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a33fdace676fb8e13eaf02b693442d707812b06b
--- /dev/null
+++ b/modules/F0Predictor/fcpe/__init__.py
@@ -0,0 +1,3 @@
+from .model import FCPEInfer # noqa: F401
+from .nvSTFT import STFT # noqa: F401
+from .pcmer import PCmer # noqa: F401
diff --git a/modules/F0Predictor/fcpe/model.py b/modules/F0Predictor/fcpe/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..91ad6baadf3fa122bd373c52815e0eb60ed025b3
--- /dev/null
+++ b/modules/F0Predictor/fcpe/model.py
@@ -0,0 +1,262 @@
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn.utils import weight_norm
+from torchaudio.transforms import Resample
+
+from .nvSTFT import STFT
+from .pcmer import PCmer
+
+
+def l2_regularization(model, l2_alpha):
+ l2_loss = []
+ for module in model.modules():
+ if type(module) is nn.Conv2d:
+ l2_loss.append((module.weight ** 2).sum() / 2.0)
+ return l2_alpha * sum(l2_loss)
+
+
+class FCPE(nn.Module):
+ def __init__(
+ self,
+ input_channel=128,
+ out_dims=360,
+ n_layers=12,
+ n_chans=512,
+ use_siren=False,
+ use_full=False,
+ loss_mse_scale=10,
+ loss_l2_regularization=False,
+ loss_l2_regularization_scale=1,
+ loss_grad1_mse=False,
+ loss_grad1_mse_scale=1,
+ f0_max=1975.5,
+ f0_min=32.70,
+ confidence=False,
+ threshold=0.05,
+ use_input_conv=True
+ ):
+ super().__init__()
+ if use_siren is True:
+ raise ValueError("Siren is not supported yet.")
+ if use_full is True:
+ raise ValueError("Full model is not supported yet.")
+
+ self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
+ self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False
+ self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale
+ is not None) else 1
+ self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
+ self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
+ self.f0_max = f0_max if (f0_max is not None) else 1975.5
+ self.f0_min = f0_min if (f0_min is not None) else 32.70
+ self.confidence = confidence if (confidence is not None) else False
+ self.threshold = threshold if (threshold is not None) else 0.05
+ self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
+
+ self.cent_table_b = torch.Tensor(
+ np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0],
+ out_dims))
+ self.register_buffer("cent_table", self.cent_table_b)
+
+ # conv in stack
+ _leaky = nn.LeakyReLU()
+ self.stack = nn.Sequential(
+ nn.Conv1d(input_channel, n_chans, 3, 1, 1),
+ nn.GroupNorm(4, n_chans),
+ _leaky,
+ nn.Conv1d(n_chans, n_chans, 3, 1, 1))
+
+ # transformer
+ self.decoder = PCmer(
+ num_layers=n_layers,
+ num_heads=8,
+ dim_model=n_chans,
+ dim_keys=n_chans,
+ dim_values=n_chans,
+ residual_dropout=0.1,
+ attention_dropout=0.1)
+ self.norm = nn.LayerNorm(n_chans)
+
+ # out
+ self.n_out = out_dims
+ self.dense_out = weight_norm(
+ nn.Linear(n_chans, self.n_out))
+
+ def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder = "local_argmax"):
+ """
+ input:
+ B x n_frames x n_unit
+ return:
+ dict of B x n_frames x feat
+ """
+ if cdecoder == "argmax":
+ self.cdecoder = self.cents_decoder
+ elif cdecoder == "local_argmax":
+ self.cdecoder = self.cents_local_decoder
+ if self.use_input_conv:
+ x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
+ else:
+ x = mel
+ x = self.decoder(x)
+ x = self.norm(x)
+ x = self.dense_out(x) # [B,N,D]
+ x = torch.sigmoid(x)
+ if not infer:
+ gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1]
+ gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim]
+ loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0) # bce loss
+ # l2 regularization
+ if self.loss_l2_regularization:
+ loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
+ x = loss_all
+ if infer:
+ x = self.cdecoder(x)
+ x = self.cent_to_f0(x)
+ if not return_hz_f0:
+ x = (1 + x / 700).log()
+ return x
+
+ def cents_decoder(self, y, mask=True):
+ B, N, _ = y.size()
+ ci = self.cent_table[None, None, :].expand(B, N, -1)
+ rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True) # cents: [B,N,1]
+ if mask:
+ confident = torch.max(y, dim=-1, keepdim=True)[0]
+ confident_mask = torch.ones_like(confident)
+ confident_mask[confident <= self.threshold] = float("-INF")
+ rtn = rtn * confident_mask
+ if self.confidence:
+ return rtn, confident
+ else:
+ return rtn
+
+ def cents_local_decoder(self, y, mask=True):
+ B, N, _ = y.size()
+ ci = self.cent_table[None, None, :].expand(B, N, -1)
+ confident, max_index = torch.max(y, dim=-1, keepdim=True)
+ local_argmax_index = torch.arange(0,9).to(max_index.device) + (max_index - 4)
+ local_argmax_index[local_argmax_index<0] = 0
+ local_argmax_index[local_argmax_index>=self.n_out] = self.n_out - 1
+ ci_l = torch.gather(ci,-1,local_argmax_index)
+ y_l = torch.gather(y,-1,local_argmax_index)
+ rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) # cents: [B,N,1]
+ if mask:
+ confident_mask = torch.ones_like(confident)
+ confident_mask[confident <= self.threshold] = float("-INF")
+ rtn = rtn * confident_mask
+ if self.confidence:
+ return rtn, confident
+ else:
+ return rtn
+
+ def cent_to_f0(self, cent):
+ return 10. * 2 ** (cent / 1200.)
+
+ def f0_to_cent(self, f0):
+ return 1200. * torch.log2(f0 / 10.)
+
+ def gaussian_blurred_cent(self, cents): # cents: [B,N,1]
+ mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.)))
+ B, N, _ = cents.size()
+ ci = self.cent_table[None, None, :].expand(B, N, -1)
+ return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
+
+
+class FCPEInfer:
+ def __init__(self, model_path, device=None, dtype=torch.float32):
+ if device is None:
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.device = device
+ ckpt = torch.load(model_path, map_location=torch.device(self.device))
+ self.args = DotDict(ckpt["config"])
+ self.dtype = dtype
+ model = FCPE(
+ input_channel=self.args.model.input_channel,
+ out_dims=self.args.model.out_dims,
+ n_layers=self.args.model.n_layers,
+ n_chans=self.args.model.n_chans,
+ use_siren=self.args.model.use_siren,
+ use_full=self.args.model.use_full,
+ loss_mse_scale=self.args.loss.loss_mse_scale,
+ loss_l2_regularization=self.args.loss.loss_l2_regularization,
+ loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
+ loss_grad1_mse=self.args.loss.loss_grad1_mse,
+ loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
+ f0_max=self.args.model.f0_max,
+ f0_min=self.args.model.f0_min,
+ confidence=self.args.model.confidence,
+ )
+ model.to(self.device).to(self.dtype)
+ model.load_state_dict(ckpt['model'])
+ model.eval()
+ self.model = model
+ self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
+
+ @torch.no_grad()
+ def __call__(self, audio, sr, threshold=0.05):
+ self.model.threshold = threshold
+ audio = audio[None,:]
+ mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
+ f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
+ return f0
+
+
+class Wav2Mel:
+
+ def __init__(self, args, device=None, dtype=torch.float32):
+ # self.args = args
+ self.sampling_rate = args.mel.sampling_rate
+ self.hop_size = args.mel.hop_size
+ if device is None:
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.device = device
+ self.dtype = dtype
+ self.stft = STFT(
+ args.mel.sampling_rate,
+ args.mel.num_mels,
+ args.mel.n_fft,
+ args.mel.win_size,
+ args.mel.hop_size,
+ args.mel.fmin,
+ args.mel.fmax
+ )
+ self.resample_kernel = {}
+
+ def extract_nvstft(self, audio, keyshift=0, train=False):
+ mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2) # B, n_frames, bins
+ return mel
+
+ def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
+ audio = audio.to(self.dtype).to(self.device)
+ # resample
+ if sample_rate == self.sampling_rate:
+ audio_res = audio
+ else:
+ key_str = str(sample_rate)
+ if key_str not in self.resample_kernel:
+ self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128)
+ self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device)
+ audio_res = self.resample_kernel[key_str](audio)
+
+ # extract
+ mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) # B, n_frames, bins
+ n_frames = int(audio.shape[1] // self.hop_size) + 1
+ if n_frames > int(mel.shape[1]):
+ mel = torch.cat((mel, mel[:, -1:, :]), 1)
+ if n_frames < int(mel.shape[1]):
+ mel = mel[:, :n_frames, :]
+ return mel
+
+ def __call__(self, audio, sample_rate, keyshift=0, train=False):
+ return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
+
+
+class DotDict(dict):
+ def __getattr__(*args):
+ val = dict.get(*args)
+ return DotDict(val) if type(val) is dict else val
+
+ __setattr__ = dict.__setitem__
+ __delattr__ = dict.__delitem__
diff --git a/modules/F0Predictor/fcpe/nvSTFT.py b/modules/F0Predictor/fcpe/nvSTFT.py
new file mode 100644
index 0000000000000000000000000000000000000000..b97435f8977d659f594b41fa3f8993ee85f02ee9
--- /dev/null
+++ b/modules/F0Predictor/fcpe/nvSTFT.py
@@ -0,0 +1,133 @@
+import os
+
+import librosa
+import numpy as np
+import soundfile as sf
+import torch
+import torch.nn.functional as F
+import torch.utils.data
+from librosa.filters import mel as librosa_mel_fn
+
+os.environ["LRU_CACHE_CAPACITY"] = "3"
+
+def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
+ sampling_rate = None
+ try:
+ data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
+ except Exception as ex:
+ print(f"'{full_path}' failed to load.\nException:")
+ print(ex)
+ if return_empty_on_exception:
+ return [], sampling_rate or target_sr or 48000
+ else:
+ raise Exception(ex)
+
+ if len(data.shape) > 1:
+ data = data[:, 0]
+ assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
+
+ if np.issubdtype(data.dtype, np.integer): # if audio data is type int
+ max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
+ else: # if audio data is type fp32
+ max_mag = max(np.amax(data), -np.amin(data))
+ max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
+
+ data = torch.FloatTensor(data.astype(np.float32))/max_mag
+
+ if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
+ return [], sampling_rate or target_sr or 48000
+ if target_sr is not None and sampling_rate != target_sr:
+ data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
+ sampling_rate = target_sr
+
+ return data, sampling_rate
+
+def dynamic_range_compression(x, C=1, clip_val=1e-5):
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
+
+def dynamic_range_decompression(x, C=1):
+ return np.exp(x) / C
+
+def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
+ return torch.log(torch.clamp(x, min=clip_val) * C)
+
+def dynamic_range_decompression_torch(x, C=1):
+ return torch.exp(x) / C
+
+class STFT():
+ def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
+ self.target_sr = sr
+
+ self.n_mels = n_mels
+ self.n_fft = n_fft
+ self.win_size = win_size
+ self.hop_length = hop_length
+ self.fmin = fmin
+ self.fmax = fmax
+ self.clip_val = clip_val
+ self.mel_basis = {}
+ self.hann_window = {}
+
+ def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
+ sampling_rate = self.target_sr
+ n_mels = self.n_mels
+ n_fft = self.n_fft
+ win_size = self.win_size
+ hop_length = self.hop_length
+ fmin = self.fmin
+ fmax = self.fmax
+ clip_val = self.clip_val
+
+ factor = 2 ** (keyshift / 12)
+ n_fft_new = int(np.round(n_fft * factor))
+ win_size_new = int(np.round(win_size * factor))
+ hop_length_new = int(np.round(hop_length * speed))
+ if not train:
+ mel_basis = self.mel_basis
+ hann_window = self.hann_window
+ else:
+ mel_basis = {}
+ hann_window = {}
+
+ if torch.min(y) < -1.:
+ print('min value is ', torch.min(y))
+ if torch.max(y) > 1.:
+ print('max value is ', torch.max(y))
+
+ mel_basis_key = str(fmax)+'_'+str(y.device)
+ if mel_basis_key not in mel_basis:
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
+ mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
+
+ keyshift_key = str(keyshift)+'_'+str(y.device)
+ if keyshift_key not in hann_window:
+ hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
+
+ pad_left = (win_size_new - hop_length_new) //2
+ pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left)
+ if pad_right < y.size(-1):
+ mode = 'reflect'
+ else:
+ mode = 'constant'
+ y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode)
+ y = y.squeeze(1)
+
+ spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key],
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
+ spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
+ if keyshift != 0:
+ size = n_fft // 2 + 1
+ resize = spec.size(1)
+ if resize < size:
+ spec = F.pad(spec, (0, 0, 0, size-resize))
+ spec = spec[:, :size, :] * win_size / win_size_new
+ spec = torch.matmul(mel_basis[mel_basis_key], spec)
+ spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
+ return spec
+
+ def __call__(self, audiopath):
+ audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
+ spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
+ return spect
+
+stft = STFT()
diff --git a/modules/F0Predictor/fcpe/pcmer.py b/modules/F0Predictor/fcpe/pcmer.py
new file mode 100644
index 0000000000000000000000000000000000000000..5c12678007ad62e1d370533fe37307226dc48492
--- /dev/null
+++ b/modules/F0Predictor/fcpe/pcmer.py
@@ -0,0 +1,369 @@
+import math
+from functools import partial
+
+import torch
+import torch.nn.functional as F
+from einops import rearrange, repeat
+from local_attention import LocalAttention
+from torch import nn
+
+#import fast_transformers.causal_product.causal_product_cuda
+
+def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
+ b, h, *_ = data.shape
+ # (batch size, head, length, model_dim)
+
+ # normalize model dim
+ data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.
+
+ # what is ration?, projection_matrix.shape[0] --> 266
+
+ ratio = (projection_matrix.shape[0] ** -0.5)
+
+ projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
+ projection = projection.type_as(data)
+
+ #data_dash = w^T x
+ data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)
+
+
+ # diag_data = D**2
+ diag_data = data ** 2
+ diag_data = torch.sum(diag_data, dim=-1)
+ diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
+ diag_data = diag_data.unsqueeze(dim=-1)
+
+ #print ()
+ if is_query:
+ data_dash = ratio * (
+ torch.exp(data_dash - diag_data -
+ torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
+ else:
+ data_dash = ratio * (
+ torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps)
+
+ return data_dash.type_as(data)
+
+def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None):
+ unstructured_block = torch.randn((cols, cols), device = device)
+ q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced')
+ q, r = map(lambda t: t.to(device), (q, r))
+
+ # proposed by @Parskatt
+ # to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
+ if qr_uniform_q:
+ d = torch.diag(r, 0)
+ q *= d.sign()
+ return q.t()
+def exists(val):
+ return val is not None
+
+def empty(tensor):
+ return tensor.numel() == 0
+
+def default(val, d):
+ return val if exists(val) else d
+
+def cast_tuple(val):
+ return (val,) if not isinstance(val, tuple) else val
+
+class PCmer(nn.Module):
+ """The encoder that is used in the Transformer model."""
+
+ def __init__(self,
+ num_layers,
+ num_heads,
+ dim_model,
+ dim_keys,
+ dim_values,
+ residual_dropout,
+ attention_dropout):
+ super().__init__()
+ self.num_layers = num_layers
+ self.num_heads = num_heads
+ self.dim_model = dim_model
+ self.dim_values = dim_values
+ self.dim_keys = dim_keys
+ self.residual_dropout = residual_dropout
+ self.attention_dropout = attention_dropout
+
+ self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
+
+ # METHODS ########################################################################################################
+
+ def forward(self, phone, mask=None):
+
+ # apply all layers to the input
+ for (i, layer) in enumerate(self._layers):
+ phone = layer(phone, mask)
+ # provide the final sequence
+ return phone
+
+
+# ==================================================================================================================== #
+# CLASS _ E N C O D E R L A Y E R #
+# ==================================================================================================================== #
+
+
+class _EncoderLayer(nn.Module):
+ """One layer of the encoder.
+
+ Attributes:
+ attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
+ feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
+ """
+
+ def __init__(self, parent: PCmer):
+ """Creates a new instance of ``_EncoderLayer``.
+
+ Args:
+ parent (Encoder): The encoder that the layers is created for.
+ """
+ super().__init__()
+
+
+ self.conformer = ConformerConvModule(parent.dim_model)
+ self.norm = nn.LayerNorm(parent.dim_model)
+ self.dropout = nn.Dropout(parent.residual_dropout)
+
+ # selfatt -> fastatt: performer!
+ self.attn = SelfAttention(dim = parent.dim_model,
+ heads = parent.num_heads,
+ causal = False)
+
+ # METHODS ########################################################################################################
+
+ def forward(self, phone, mask=None):
+
+ # compute attention sub-layer
+ phone = phone + (self.attn(self.norm(phone), mask=mask))
+
+ phone = phone + (self.conformer(phone))
+
+ return phone
+
+def calc_same_padding(kernel_size):
+ pad = kernel_size // 2
+ return (pad, pad - (kernel_size + 1) % 2)
+
+# helper classes
+
+class Swish(nn.Module):
+ def forward(self, x):
+ return x * x.sigmoid()
+
+class Transpose(nn.Module):
+ def __init__(self, dims):
+ super().__init__()
+ assert len(dims) == 2, 'dims must be a tuple of two dimensions'
+ self.dims = dims
+
+ def forward(self, x):
+ return x.transpose(*self.dims)
+
+class GLU(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.dim = dim
+
+ def forward(self, x):
+ out, gate = x.chunk(2, dim=self.dim)
+ return out * gate.sigmoid()
+
+class DepthWiseConv1d(nn.Module):
+ def __init__(self, chan_in, chan_out, kernel_size, padding):
+ super().__init__()
+ self.padding = padding
+ self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)
+
+ def forward(self, x):
+ x = F.pad(x, self.padding)
+ return self.conv(x)
+
+class ConformerConvModule(nn.Module):
+ def __init__(
+ self,
+ dim,
+ causal = False,
+ expansion_factor = 2,
+ kernel_size = 31,
+ dropout = 0.):
+ super().__init__()
+
+ inner_dim = dim * expansion_factor
+ padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
+
+ self.net = nn.Sequential(
+ nn.LayerNorm(dim),
+ Transpose((1, 2)),
+ nn.Conv1d(dim, inner_dim * 2, 1),
+ GLU(dim=1),
+ DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
+ #nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
+ Swish(),
+ nn.Conv1d(inner_dim, dim, 1),
+ Transpose((1, 2)),
+ nn.Dropout(dropout)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+def linear_attention(q, k, v):
+ if v is None:
+ #print (k.size(), q.size())
+ out = torch.einsum('...ed,...nd->...ne', k, q)
+ return out
+
+ else:
+ k_cumsum = k.sum(dim = -2)
+ #k_cumsum = k.sum(dim = -2)
+ D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8)
+
+ context = torch.einsum('...nd,...ne->...de', k, v)
+ #print ("TRUEEE: ", context.size(), q.size(), D_inv.size())
+ out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
+ return out
+
+def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None):
+ nb_full_blocks = int(nb_rows / nb_columns)
+ #print (nb_full_blocks)
+ block_list = []
+
+ for _ in range(nb_full_blocks):
+ q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
+ block_list.append(q)
+ # block_list[n] is a orthogonal matrix ... (model_dim * model_dim)
+ #print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1)))
+ #print (nb_rows, nb_full_blocks, nb_columns)
+ remaining_rows = nb_rows - nb_full_blocks * nb_columns
+ #print (remaining_rows)
+ if remaining_rows > 0:
+ q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
+ #print (q[:remaining_rows].size())
+ block_list.append(q[:remaining_rows])
+
+ final_matrix = torch.cat(block_list)
+
+ if scaling == 0:
+ multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
+ elif scaling == 1:
+ multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
+ else:
+ raise ValueError(f'Invalid scaling {scaling}')
+
+ return torch.diag(multiplier) @ final_matrix
+
+class FastAttention(nn.Module):
+ def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False):
+ super().__init__()
+ nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
+
+ self.dim_heads = dim_heads
+ self.nb_features = nb_features
+ self.ortho_scaling = ortho_scaling
+
+ self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q)
+ projection_matrix = self.create_projection()
+ self.register_buffer('projection_matrix', projection_matrix)
+
+ self.generalized_attention = generalized_attention
+ self.kernel_fn = kernel_fn
+
+ # if this is turned on, no projection will be used
+ # queries and keys will be softmax-ed as in the original efficient attention paper
+ self.no_projection = no_projection
+
+ self.causal = causal
+
+ @torch.no_grad()
+ def redraw_projection_matrix(self):
+ projections = self.create_projection()
+ self.projection_matrix.copy_(projections)
+ del projections
+
+ def forward(self, q, k, v):
+ device = q.device
+
+ if self.no_projection:
+ q = q.softmax(dim = -1)
+ k = torch.exp(k) if self.causal else k.softmax(dim = -2)
+ else:
+ create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
+
+ q = create_kernel(q, is_query = True)
+ k = create_kernel(k, is_query = False)
+
+ attn_fn = linear_attention if not self.causal else self.causal_linear_fn
+ if v is None:
+ out = attn_fn(q, k, None)
+ return out
+ else:
+ out = attn_fn(q, k, v)
+ return out
+class SelfAttention(nn.Module):
+ def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False):
+ super().__init__()
+ assert dim % heads == 0, 'dimension must be divisible by number of heads'
+ dim_head = default(dim_head, dim // heads)
+ inner_dim = dim_head * heads
+ self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection)
+
+ self.heads = heads
+ self.global_heads = heads - local_heads
+ self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None
+
+ #print (heads, nb_features, dim_head)
+ #name_embedding = torch.zeros(110, heads, dim_head, dim_head)
+ #self.name_embedding = nn.Parameter(name_embedding, requires_grad=True)
+
+
+ self.to_q = nn.Linear(dim, inner_dim)
+ self.to_k = nn.Linear(dim, inner_dim)
+ self.to_v = nn.Linear(dim, inner_dim)
+ self.to_out = nn.Linear(inner_dim, dim)
+ self.dropout = nn.Dropout(dropout)
+
+ @torch.no_grad()
+ def redraw_projection_matrix(self):
+ self.fast_attention.redraw_projection_matrix()
+ #torch.nn.init.zeros_(self.name_embedding)
+ #print (torch.sum(self.name_embedding))
+ def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs):
+ _, _, _, h, gh = *x.shape, self.heads, self.global_heads
+
+ cross_attend = exists(context)
+
+ context = default(context, x)
+ context_mask = default(context_mask, mask) if not cross_attend else context_mask
+ #print (torch.sum(self.name_embedding))
+ q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
+ (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
+
+ attn_outs = []
+ #print (name)
+ #print (self.name_embedding[name].size())
+ if not empty(q):
+ if exists(context_mask):
+ global_mask = context_mask[:, None, :, None]
+ v.masked_fill_(~global_mask, 0.)
+ if cross_attend:
+ pass
+ #print (torch.sum(self.name_embedding))
+ #out = self.fast_attention(q,self.name_embedding[name],None)
+ #print (torch.sum(self.name_embedding[...,-1:]))
+ else:
+ out = self.fast_attention(q, k, v)
+ attn_outs.append(out)
+
+ if not empty(lq):
+ assert not cross_attend, 'local attention is not compatible with cross attention'
+ out = self.local_attn(lq, lk, lv, input_mask = mask)
+ attn_outs.append(out)
+
+ out = torch.cat(attn_outs, dim = 1)
+ out = rearrange(out, 'b h n d -> b n (h d)')
+ out = self.to_out(out)
+ return self.dropout(out)
\ No newline at end of file
diff --git a/modules/F0Predictor/rmvpe/__init__.py b/modules/F0Predictor/rmvpe/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e2dcf9e971ac4fcea29fe2e312d591fd0447f95d
--- /dev/null
+++ b/modules/F0Predictor/rmvpe/__init__.py
@@ -0,0 +1,10 @@
+from .constants import * # noqa: F403
+from .inference import RMVPE # noqa: F401
+from .model import E2E, E2E0 # noqa: F401
+from .spec import MelSpectrogram # noqa: F401
+from .utils import ( # noqa: F401
+ cycle,
+ summary,
+ to_local_average_cents,
+ to_viterbi_cents,
+)
diff --git a/modules/F0Predictor/rmvpe/constants.py b/modules/F0Predictor/rmvpe/constants.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5f52efc9b40f49bb746dae6807a817bffce4375
--- /dev/null
+++ b/modules/F0Predictor/rmvpe/constants.py
@@ -0,0 +1,9 @@
+SAMPLE_RATE = 16000
+
+N_CLASS = 360
+
+N_MELS = 128
+MEL_FMIN = 30
+MEL_FMAX = SAMPLE_RATE // 2
+WINDOW_LENGTH = 1024
+CONST = 1997.3794084376191
diff --git a/modules/F0Predictor/rmvpe/deepunet.py b/modules/F0Predictor/rmvpe/deepunet.py
new file mode 100644
index 0000000000000000000000000000000000000000..b0171d562ac58526c7693a15124e181c78ad0a18
--- /dev/null
+++ b/modules/F0Predictor/rmvpe/deepunet.py
@@ -0,0 +1,190 @@
+import torch
+import torch.nn as nn
+
+from .constants import N_MELS
+
+
+class ConvBlockRes(nn.Module):
+ def __init__(self, in_channels, out_channels, momentum=0.01):
+ super(ConvBlockRes, self).__init__()
+ self.conv = nn.Sequential(
+ nn.Conv2d(in_channels=in_channels,
+ out_channels=out_channels,
+ kernel_size=(3, 3),
+ stride=(1, 1),
+ padding=(1, 1),
+ bias=False),
+ nn.BatchNorm2d(out_channels, momentum=momentum),
+ nn.ReLU(),
+
+ nn.Conv2d(in_channels=out_channels,
+ out_channels=out_channels,
+ kernel_size=(3, 3),
+ stride=(1, 1),
+ padding=(1, 1),
+ bias=False),
+ nn.BatchNorm2d(out_channels, momentum=momentum),
+ nn.ReLU(),
+ )
+ if in_channels != out_channels:
+ self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
+ self.is_shortcut = True
+ else:
+ self.is_shortcut = False
+
+ def forward(self, x):
+ if self.is_shortcut:
+ return self.conv(x) + self.shortcut(x)
+ else:
+ return self.conv(x) + x
+
+
+class ResEncoderBlock(nn.Module):
+ def __init__(self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01):
+ super(ResEncoderBlock, self).__init__()
+ self.n_blocks = n_blocks
+ self.conv = nn.ModuleList()
+ self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
+ for i in range(n_blocks - 1):
+ self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
+ self.kernel_size = kernel_size
+ if self.kernel_size is not None:
+ self.pool = nn.AvgPool2d(kernel_size=kernel_size)
+
+ def forward(self, x):
+ for i in range(self.n_blocks):
+ x = self.conv[i](x)
+ if self.kernel_size is not None:
+ return x, self.pool(x)
+ else:
+ return x
+
+
+class ResDecoderBlock(nn.Module):
+ def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
+ super(ResDecoderBlock, self).__init__()
+ out_padding = (0, 1) if stride == (1, 2) else (1, 1)
+ self.n_blocks = n_blocks
+ self.conv1 = nn.Sequential(
+ nn.ConvTranspose2d(in_channels=in_channels,
+ out_channels=out_channels,
+ kernel_size=(3, 3),
+ stride=stride,
+ padding=(1, 1),
+ output_padding=out_padding,
+ bias=False),
+ nn.BatchNorm2d(out_channels, momentum=momentum),
+ nn.ReLU(),
+ )
+ self.conv2 = nn.ModuleList()
+ self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
+ for i in range(n_blocks-1):
+ self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
+
+ def forward(self, x, concat_tensor):
+ x = self.conv1(x)
+ x = torch.cat((x, concat_tensor), dim=1)
+ for i in range(self.n_blocks):
+ x = self.conv2[i](x)
+ return x
+
+
+class Encoder(nn.Module):
+ def __init__(self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01):
+ super(Encoder, self).__init__()
+ self.n_encoders = n_encoders
+ self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
+ self.layers = nn.ModuleList()
+ self.latent_channels = []
+ for i in range(self.n_encoders):
+ self.layers.append(ResEncoderBlock(in_channels, out_channels, kernel_size, n_blocks, momentum=momentum))
+ self.latent_channels.append([out_channels, in_size])
+ in_channels = out_channels
+ out_channels *= 2
+ in_size //= 2
+ self.out_size = in_size
+ self.out_channel = out_channels
+
+ def forward(self, x):
+ concat_tensors = []
+ x = self.bn(x)
+ for i in range(self.n_encoders):
+ _, x = self.layers[i](x)
+ concat_tensors.append(_)
+ return x, concat_tensors
+
+
+class Intermediate(nn.Module):
+ def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
+ super(Intermediate, self).__init__()
+ self.n_inters = n_inters
+ self.layers = nn.ModuleList()
+ self.layers.append(ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum))
+ for i in range(self.n_inters-1):
+ self.layers.append(ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum))
+
+ def forward(self, x):
+ for i in range(self.n_inters):
+ x = self.layers[i](x)
+ return x
+
+
+class Decoder(nn.Module):
+ def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
+ super(Decoder, self).__init__()
+ self.layers = nn.ModuleList()
+ self.n_decoders = n_decoders
+ for i in range(self.n_decoders):
+ out_channels = in_channels // 2
+ self.layers.append(ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum))
+ in_channels = out_channels
+
+ def forward(self, x, concat_tensors):
+ for i in range(self.n_decoders):
+ x = self.layers[i](x, concat_tensors[-1-i])
+ return x
+
+
+class TimbreFilter(nn.Module):
+ def __init__(self, latent_rep_channels):
+ super(TimbreFilter, self).__init__()
+ self.layers = nn.ModuleList()
+ for latent_rep in latent_rep_channels:
+ self.layers.append(ConvBlockRes(latent_rep[0], latent_rep[0]))
+
+ def forward(self, x_tensors):
+ out_tensors = []
+ for i, layer in enumerate(self.layers):
+ out_tensors.append(layer(x_tensors[i]))
+ return out_tensors
+
+
+class DeepUnet(nn.Module):
+ def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
+ super(DeepUnet, self).__init__()
+ self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels)
+ self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
+ self.tf = TimbreFilter(self.encoder.latent_channels)
+ self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)
+
+ def forward(self, x):
+ x, concat_tensors = self.encoder(x)
+ x = self.intermediate(x)
+ concat_tensors = self.tf(concat_tensors)
+ x = self.decoder(x, concat_tensors)
+ return x
+
+
+class DeepUnet0(nn.Module):
+ def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
+ super(DeepUnet0, self).__init__()
+ self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels)
+ self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
+ self.tf = TimbreFilter(self.encoder.latent_channels)
+ self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)
+
+ def forward(self, x):
+ x, concat_tensors = self.encoder(x)
+ x = self.intermediate(x)
+ x = self.decoder(x, concat_tensors)
+ return x
diff --git a/modules/F0Predictor/rmvpe/inference.py b/modules/F0Predictor/rmvpe/inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..02d21881e5ccbf969759f4ef8030abce3083ce8c
--- /dev/null
+++ b/modules/F0Predictor/rmvpe/inference.py
@@ -0,0 +1,57 @@
+import torch
+import torch.nn.functional as F
+from torchaudio.transforms import Resample
+
+from .constants import * # noqa: F403
+from .model import E2E0
+from .spec import MelSpectrogram
+from .utils import to_local_average_cents, to_viterbi_cents
+
+
+class RMVPE:
+ def __init__(self, model_path, device=None, dtype = torch.float32, hop_length=160):
+ self.resample_kernel = {}
+ if device is None:
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ else:
+ self.device = device
+ model = E2E0(4, 1, (2, 2))
+ ckpt = torch.load(model_path, map_location=torch.device(self.device))
+ model.load_state_dict(ckpt['model'])
+ model = model.to(dtype).to(self.device)
+ model.eval()
+ self.model = model
+ self.dtype = dtype
+ self.mel_extractor = MelSpectrogram(N_MELS, SAMPLE_RATE, WINDOW_LENGTH, hop_length, None, MEL_FMIN, MEL_FMAX) # noqa: F405
+ self.resample_kernel = {}
+
+ def mel2hidden(self, mel):
+ with torch.no_grad():
+ n_frames = mel.shape[-1]
+ mel = F.pad(mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode='constant')
+ hidden = self.model(mel)
+ return hidden[:, :n_frames]
+
+ def decode(self, hidden, thred=0.03, use_viterbi=False):
+ if use_viterbi:
+ cents_pred = to_viterbi_cents(hidden, thred=thred)
+ else:
+ cents_pred = to_local_average_cents(hidden, thred=thred)
+ f0 = torch.Tensor([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred]).to(self.device)
+ return f0
+
+ def infer_from_audio(self, audio, sample_rate=16000, thred=0.05, use_viterbi=False):
+ audio = audio.unsqueeze(0).to(self.dtype).to(self.device)
+ if sample_rate == 16000:
+ audio_res = audio
+ else:
+ key_str = str(sample_rate)
+ if key_str not in self.resample_kernel:
+ self.resample_kernel[key_str] = Resample(sample_rate, 16000, lowpass_filter_width=128)
+ self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device)
+ audio_res = self.resample_kernel[key_str](audio)
+ mel_extractor = self.mel_extractor.to(self.device)
+ mel = mel_extractor(audio_res, center=True).to(self.dtype)
+ hidden = self.mel2hidden(mel)
+ f0 = self.decode(hidden.squeeze(0), thred=thred, use_viterbi=use_viterbi)
+ return f0
diff --git a/modules/F0Predictor/rmvpe/model.py b/modules/F0Predictor/rmvpe/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1b6b643b113a0eee9a9142016c15444273002c5
--- /dev/null
+++ b/modules/F0Predictor/rmvpe/model.py
@@ -0,0 +1,67 @@
+from torch import nn
+
+from .constants import * # noqa: F403
+from .deepunet import DeepUnet, DeepUnet0
+from .seq import BiGRU
+from .spec import MelSpectrogram
+
+
+class E2E(nn.Module):
+ def __init__(self, hop_length, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1,
+ en_out_channels=16):
+ super(E2E, self).__init__()
+ self.mel = MelSpectrogram(N_MELS, SAMPLE_RATE, WINDOW_LENGTH, hop_length, None, MEL_FMIN, MEL_FMAX) # noqa: F405
+ self.unet = DeepUnet(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels)
+ self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
+ if n_gru:
+ self.fc = nn.Sequential(
+ BiGRU(3 * N_MELS, 256, n_gru), # noqa: F405
+ nn.Linear(512, N_CLASS), # noqa: F405
+ nn.Dropout(0.25),
+ nn.Sigmoid()
+ )
+ else:
+ self.fc = nn.Sequential(
+ nn.Linear(3 * N_MELS, N_CLASS), # noqa: F405
+ nn.Dropout(0.25),
+ nn.Sigmoid()
+ )
+
+ def forward(self, x):
+ mel = self.mel(x.reshape(-1, x.shape[-1])).transpose(-1, -2).unsqueeze(1)
+ x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
+ # x = self.fc(x)
+ hidden_vec = 0
+ if len(self.fc) == 4:
+ for i in range(len(self.fc)):
+ x = self.fc[i](x)
+ if i == 0:
+ hidden_vec = x
+ return hidden_vec, x
+
+
+class E2E0(nn.Module):
+ def __init__(self, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1,
+ en_out_channels=16):
+ super(E2E0, self).__init__()
+ self.unet = DeepUnet0(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels)
+ self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
+ if n_gru:
+ self.fc = nn.Sequential(
+ BiGRU(3 * N_MELS, 256, n_gru), # noqa: F405
+ nn.Linear(512, N_CLASS), # noqa: F405
+ nn.Dropout(0.25),
+ nn.Sigmoid()
+ )
+ else:
+ self.fc = nn.Sequential(
+ nn.Linear(3 * N_MELS, N_CLASS), # noqa: F405
+ nn.Dropout(0.25),
+ nn.Sigmoid()
+ )
+
+ def forward(self, mel):
+ mel = mel.transpose(-1, -2).unsqueeze(1)
+ x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
+ x = self.fc(x)
+ return x
diff --git a/modules/F0Predictor/rmvpe/seq.py b/modules/F0Predictor/rmvpe/seq.py
new file mode 100644
index 0000000000000000000000000000000000000000..0d48e49d72e14d34f048ca0b5824ea1f335e9a0d
--- /dev/null
+++ b/modules/F0Predictor/rmvpe/seq.py
@@ -0,0 +1,20 @@
+import torch.nn as nn
+
+
+class BiGRU(nn.Module):
+ def __init__(self, input_features, hidden_features, num_layers):
+ super(BiGRU, self).__init__()
+ self.gru = nn.GRU(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True)
+
+ def forward(self, x):
+ return self.gru(x)[0]
+
+
+class BiLSTM(nn.Module):
+ def __init__(self, input_features, hidden_features, num_layers):
+ super(BiLSTM, self).__init__()
+ self.lstm = nn.LSTM(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True)
+
+ def forward(self, x):
+ return self.lstm(x)[0]
+
diff --git a/modules/F0Predictor/rmvpe/spec.py b/modules/F0Predictor/rmvpe/spec.py
new file mode 100644
index 0000000000000000000000000000000000000000..349d05e4541ccad31cbbb24372a89cda7c0aacc0
--- /dev/null
+++ b/modules/F0Predictor/rmvpe/spec.py
@@ -0,0 +1,67 @@
+import numpy as np
+import torch
+import torch.nn.functional as F
+from librosa.filters import mel
+
+
+class MelSpectrogram(torch.nn.Module):
+ def __init__(
+ self,
+ n_mel_channels,
+ sampling_rate,
+ win_length,
+ hop_length,
+ n_fft=None,
+ mel_fmin=0,
+ mel_fmax=None,
+ clamp = 1e-5
+ ):
+ super().__init__()
+ n_fft = win_length if n_fft is None else n_fft
+ self.hann_window = {}
+ mel_basis = mel(
+ sr=sampling_rate,
+ n_fft=n_fft,
+ n_mels=n_mel_channels,
+ fmin=mel_fmin,
+ fmax=mel_fmax,
+ htk=True)
+ mel_basis = torch.from_numpy(mel_basis).float()
+ self.register_buffer("mel_basis", mel_basis)
+ self.n_fft = win_length if n_fft is None else n_fft
+ self.hop_length = hop_length
+ self.win_length = win_length
+ self.sampling_rate = sampling_rate
+ self.n_mel_channels = n_mel_channels
+ self.clamp = clamp
+
+ def forward(self, audio, keyshift=0, speed=1, center=True):
+ factor = 2 ** (keyshift / 12)
+ n_fft_new = int(np.round(self.n_fft * factor))
+ win_length_new = int(np.round(self.win_length * factor))
+ hop_length_new = int(np.round(self.hop_length * speed))
+
+ keyshift_key = str(keyshift)+'_'+str(audio.device)
+ if keyshift_key not in self.hann_window:
+ self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(audio.device)
+
+ fft = torch.stft(
+ audio,
+ n_fft=n_fft_new,
+ hop_length=hop_length_new,
+ win_length=win_length_new,
+ window=self.hann_window[keyshift_key],
+ center=center,
+ return_complex=True)
+ magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
+
+ if keyshift != 0:
+ size = self.n_fft // 2 + 1
+ resize = magnitude.size(1)
+ if resize < size:
+ magnitude = F.pad(magnitude, (0, 0, 0, size-resize))
+ magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
+
+ mel_output = torch.matmul(self.mel_basis, magnitude)
+ log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
+ return log_mel_spec
\ No newline at end of file
diff --git a/modules/F0Predictor/rmvpe/utils.py b/modules/F0Predictor/rmvpe/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..4395255f8608da2bce0b1f15d6bd2b2bd02c1fe7
--- /dev/null
+++ b/modules/F0Predictor/rmvpe/utils.py
@@ -0,0 +1,107 @@
+import sys
+from functools import reduce
+
+import librosa
+import numpy as np
+import torch
+from torch.nn.modules.module import _addindent
+
+from .constants import * # noqa: F403
+
+
+def cycle(iterable):
+ while True:
+ for item in iterable:
+ yield item
+
+
+def summary(model, file=sys.stdout):
+ def repr(model):
+ # We treat the extra repr like the sub-module, one item per line
+ extra_lines = []
+ extra_repr = model.extra_repr()
+ # empty string will be split into list ['']
+ if extra_repr:
+ extra_lines = extra_repr.split('\n')
+ child_lines = []
+ total_params = 0
+ for key, module in model._modules.items():
+ mod_str, num_params = repr(module)
+ mod_str = _addindent(mod_str, 2)
+ child_lines.append('(' + key + '): ' + mod_str)
+ total_params += num_params
+ lines = extra_lines + child_lines
+
+ for name, p in model._parameters.items():
+ if hasattr(p, 'shape'):
+ total_params += reduce(lambda x, y: x * y, p.shape)
+
+ main_str = model._get_name() + '('
+ if lines:
+ # simple one-liner info, which most builtin Modules will use
+ if len(extra_lines) == 1 and not child_lines:
+ main_str += extra_lines[0]
+ else:
+ main_str += '\n ' + '\n '.join(lines) + '\n'
+
+ main_str += ')'
+ if file is sys.stdout:
+ main_str += ', \033[92m{:,}\033[0m params'.format(total_params)
+ else:
+ main_str += ', {:,} params'.format(total_params)
+ return main_str, total_params
+
+ string, count = repr(model)
+ if file is not None:
+ if isinstance(file, str):
+ file = open(file, 'w')
+ print(string, file=file)
+ file.flush()
+
+ return count
+
+
+def to_local_average_cents(salience, center=None, thred=0.05):
+ """
+ find the weighted average cents near the argmax bin
+ """
+
+ if not hasattr(to_local_average_cents, 'cents_mapping'):
+ # the bin number-to-cents mapping
+ to_local_average_cents.cents_mapping = (
+ 20 * torch.arange(N_CLASS) + CONST).to(salience.device) # noqa: F405
+
+ if salience.ndim == 1:
+ if center is None:
+ center = int(torch.argmax(salience))
+ start = max(0, center - 4)
+ end = min(len(salience), center + 5)
+ salience = salience[start:end]
+ product_sum = torch.sum(
+ salience * to_local_average_cents.cents_mapping[start:end])
+ weight_sum = torch.sum(salience)
+ return product_sum / weight_sum if torch.max(salience) > thred else 0
+ if salience.ndim == 2:
+ return torch.Tensor([to_local_average_cents(salience[i, :], None, thred) for i in
+ range(salience.shape[0])]).to(salience.device)
+
+ raise Exception("label should be either 1d or 2d ndarray")
+
+def to_viterbi_cents(salience, thred=0.05):
+ # Create viterbi transition matrix
+ if not hasattr(to_viterbi_cents, 'transition'):
+ xx, yy = torch.meshgrid(range(N_CLASS), range(N_CLASS)) # noqa: F405
+ transition = torch.maximum(30 - abs(xx - yy), 0)
+ transition = transition / transition.sum(axis=1, keepdims=True)
+ to_viterbi_cents.transition = transition
+
+ # Convert to probability
+ prob = salience.T
+ prob = prob / prob.sum(axis=0)
+
+ # Perform viterbi decoding
+ path = librosa.sequence.viterbi(prob.detach().cpu().numpy(), to_viterbi_cents.transition).astype(np.int64)
+
+ return torch.Tensor([to_local_average_cents(salience[i, :], path[i], thred) for i in
+ range(len(path))]).to(salience.device)
+
\ No newline at end of file
diff --git a/modules/attentions.py b/modules/attentions.py
index f9c11ca4a3acb86bf1abc04d9dcfa82a4ed4061f..f9d75bc65e45f8e27460c18e0d267605a752f013 100644
--- a/modules/attentions.py
+++ b/modules/attentions.py
@@ -1,18 +1,17 @@
-import copy
import math
-import numpy as np
+
import torch
from torch import nn
from torch.nn import functional as F
import modules.commons as commons
-import modules.modules as modules
+from modules.DSConv import weight_norm_modules
from modules.modules import LayerNorm
class FFT(nn.Module):
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
- proximal_bias=False, proximal_init=True, **kwargs):
+ proximal_bias=False, proximal_init=True, isflow = False, **kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
@@ -22,7 +21,11 @@ class FFT(nn.Module):
self.p_dropout = p_dropout
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
-
+ if isflow:
+ cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1)
+ self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
+ self.cond_layer = weight_norm_modules(cond_layer, name='weight')
+ self.gin_channels = kwargs["gin_channels"]
self.drop = nn.Dropout(p_dropout)
self.self_attn_layers = nn.ModuleList()
self.norm_layers_0 = nn.ModuleList()
@@ -37,14 +40,25 @@ class FFT(nn.Module):
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
self.norm_layers_1.append(LayerNorm(hidden_channels))
- def forward(self, x, x_mask):
+ def forward(self, x, x_mask, g = None):
"""
x: decoder input
h: encoder output
"""
+ if g is not None:
+ g = self.cond_layer(g)
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
x = x * x_mask
for i in range(self.n_layers):
+ if g is not None:
+ x = self.cond_pre(x)
+ cond_offset = i * 2 * self.hidden_channels
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
+ x = commons.fused_add_tanh_sigmoid_multiply(
+ x,
+ g_l,
+ torch.IntTensor([self.hidden_channels]))
y = self.self_attn_layers[i](x, x, self_attn_mask)
y = self.drop(y)
x = self.norm_layers_0[i](x + y)
@@ -243,7 +257,7 @@ class MultiHeadAttention(nn.Module):
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
- max_relative_position = 2 * self.window_size + 1
+ 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
diff --git a/modules/commons.py b/modules/commons.py
index 074888006392e956ce204d8368362dbb2cd4e304..761379da55793b7f2eca1c9ba511ec767ac1d90e 100644
--- a/modules/commons.py
+++ b/modules/commons.py
@@ -1,9 +1,9 @@
import math
-import numpy as np
+
import torch
-from torch import nn
from torch.nn import functional as F
+
def slice_pitch_segments(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :segment_size])
for i in range(x.size(0)):
@@ -24,10 +24,12 @@ def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
- if classname.find("Conv") != -1:
+ if "Depthwise_Separable" in classname:
+ m.depth_conv.weight.data.normal_(mean, std)
+ m.point_conv.weight.data.normal_(mean, std)
+ elif classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
-
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
@@ -134,12 +136,6 @@ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
return acts
-def convert_pad_shape(pad_shape):
- l = pad_shape[::-1]
- pad_shape = [item for sublist in l for item in sublist]
- return pad_shape
-
-
def shift_1d(x):
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
return x
@@ -157,7 +153,6 @@ def generate_path(duration, mask):
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
- device = duration.device
b, _, t_y, t_x = mask.shape
cum_duration = torch.cumsum(duration, -1)
diff --git a/modules/enhancer.py b/modules/enhancer.py
index 37676311f7d8dc4ddc2a5244dedc27b2437e04f5..a3f0dd0460ff6d6153f9277dfa90763bc03861db 100644
--- a/modules/enhancer.py
+++ b/modules/enhancer.py
@@ -1,10 +1,12 @@
import numpy as np
import torch
import torch.nn.functional as F
-from vdecoder.nsf_hifigan.nvSTFT import STFT
-from vdecoder.nsf_hifigan.models import load_model
from torchaudio.transforms import Resample
+from vdecoder.nsf_hifigan.models import load_model
+from vdecoder.nsf_hifigan.nvSTFT import STFT
+
+
class Enhancer:
def __init__(self, enhancer_type, enhancer_ckpt, device=None):
if device is None:
diff --git a/modules/losses.py b/modules/losses.py
index cd21799eccde350c3aac0bdd661baf96ed220147..494e979a60ba069114cac609bf6454a99c1019e3 100644
--- a/modules/losses.py
+++ b/modules/losses.py
@@ -1,7 +1,4 @@
-import torch
-from torch.nn import functional as F
-
-import modules.commons as commons
+import torch
def feature_loss(fmap_r, fmap_g):
diff --git a/modules/mel_processing.py b/modules/mel_processing.py
index 99c5b35beb83f3b288af0fac5b49ebf2c69f062c..c21e4bffb6d9f5fd7b45a84176b3e6206f7d29db 100644
--- a/modules/mel_processing.py
+++ b/modules/mel_processing.py
@@ -1,16 +1,5 @@
-import math
-import os
-import random
import torch
-from torch import nn
-import torch.nn.functional as F
import torch.utils.data
-import numpy as np
-import librosa
-import librosa.util as librosa_util
-from librosa.util import normalize, pad_center, tiny
-from scipy.signal import get_window
-from scipy.io.wavfile import read
from librosa.filters import mel as librosa_mel_fn
MAX_WAV_VALUE = 32768.0
@@ -62,9 +51,14 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
+
+ y_dtype = y.dtype
+ if y.dtype == torch.bfloat16:
+ y = y.to(torch.float32)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
- center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
+ spec = torch.view_as_real(spec).to(y_dtype)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
@@ -83,30 +77,7 @@ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
- if torch.min(y) < -1.:
- print('min value is ', torch.min(y))
- if torch.max(y) > 1.:
- print('max value is ', torch.max(y))
-
- global mel_basis, hann_window
- dtype_device = str(y.dtype) + '_' + str(y.device)
- fmax_dtype_device = str(fmax) + '_' + dtype_device
- wnsize_dtype_device = str(win_size) + '_' + dtype_device
- if fmax_dtype_device not in mel_basis:
- mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
- mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
- if wnsize_dtype_device not in hann_window:
- hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
-
- y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
- y = y.squeeze(1)
-
- spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
- center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
-
- spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
-
- spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
- spec = spectral_normalize_torch(spec)
-
+ spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
+ spec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
+
return spec
diff --git a/modules/modules.py b/modules/modules.py
index 54290fd207b25e93831bd21005990ea137e6b50e..a622d4f264a8d89a62a1b549efa71f4c37eb7ca1 100644
--- a/modules/modules.py
+++ b/modules/modules.py
@@ -1,20 +1,24 @@
-import copy
-import math
-import numpy as np
-import scipy
import torch
from torch import nn
from torch.nn import functional as F
-from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
-from torch.nn.utils import weight_norm, remove_weight_norm
-
+import modules.attentions as attentions
import modules.commons as commons
-from modules.commons import init_weights, get_padding
-
+from modules.commons import get_padding, init_weights
+from modules.DSConv import (
+ Depthwise_Separable_Conv1D,
+ remove_weight_norm_modules,
+ weight_norm_modules,
+)
LRELU_SLOPE = 0.1
+Conv1dModel = nn.Conv1d
+
+def set_Conv1dModel(use_depthwise_conv):
+ global Conv1dModel
+ Conv1dModel = Depthwise_Separable_Conv1D if use_depthwise_conv else nn.Conv1d
+
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
@@ -44,13 +48,13 @@ class ConvReluNorm(nn.Module):
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
- self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
+ self.conv_layers.append(Conv1dModel(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(
nn.ReLU(),
nn.Dropout(p_dropout))
for _ in range(n_layers-1):
- self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
+ self.conv_layers.append(Conv1dModel(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
@@ -66,47 +70,6 @@ class ConvReluNorm(nn.Module):
return x * x_mask
-class DDSConv(nn.Module):
- """
- Dialted and Depth-Separable Convolution
- """
- def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
- super().__init__()
- self.channels = channels
- self.kernel_size = kernel_size
- self.n_layers = n_layers
- self.p_dropout = p_dropout
-
- self.drop = nn.Dropout(p_dropout)
- self.convs_sep = nn.ModuleList()
- self.convs_1x1 = nn.ModuleList()
- self.norms_1 = nn.ModuleList()
- self.norms_2 = nn.ModuleList()
- for i in range(n_layers):
- dilation = kernel_size ** i
- padding = (kernel_size * dilation - dilation) // 2
- self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
- groups=channels, dilation=dilation, padding=padding
- ))
- self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
- self.norms_1.append(LayerNorm(channels))
- self.norms_2.append(LayerNorm(channels))
-
- def forward(self, x, x_mask, g=None):
- if g is not None:
- x = x + g
- for i in range(self.n_layers):
- y = self.convs_sep[i](x * x_mask)
- y = self.norms_1[i](y)
- y = F.gelu(y)
- y = self.convs_1x1[i](y)
- y = self.norms_2[i](y)
- y = F.gelu(y)
- y = self.drop(y)
- x = x + y
- return x * x_mask
-
-
class WN(torch.nn.Module):
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
super(WN, self).__init__()
@@ -124,14 +87,14 @@ class WN(torch.nn.Module):
if gin_channels != 0:
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
- self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
+ self.cond_layer = weight_norm_modules(cond_layer, name='weight')
for i in range(n_layers):
dilation = dilation_rate ** i
padding = int((kernel_size * dilation - dilation) / 2)
- in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
+ in_layer = Conv1dModel(hidden_channels, 2*hidden_channels, kernel_size,
dilation=dilation, padding=padding)
- in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
+ in_layer = weight_norm_modules(in_layer, name='weight')
self.in_layers.append(in_layer)
# last one is not necessary
@@ -141,7 +104,7 @@ class WN(torch.nn.Module):
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
- res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
+ res_skip_layer = weight_norm_modules(res_skip_layer, name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, x, x_mask, g=None, **kwargs):
@@ -176,32 +139,32 @@ class WN(torch.nn.Module):
def remove_weight_norm(self):
if self.gin_channels != 0:
- torch.nn.utils.remove_weight_norm(self.cond_layer)
+ remove_weight_norm_modules(self.cond_layer)
for l in self.in_layers:
- torch.nn.utils.remove_weight_norm(l)
+ remove_weight_norm_modules(l)
for l in self.res_skip_layers:
- torch.nn.utils.remove_weight_norm(l)
+ remove_weight_norm_modules(l)
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.convs1 = nn.ModuleList([
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ weight_norm_modules(Conv1dModel(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ weight_norm_modules(Conv1dModel(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
+ weight_norm_modules(Conv1dModel(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ weight_norm_modules(Conv1dModel(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ weight_norm_modules(Conv1dModel(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ weight_norm_modules(Conv1dModel(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
@@ -223,18 +186,18 @@ class ResBlock1(torch.nn.Module):
def remove_weight_norm(self):
for l in self.convs1:
- remove_weight_norm(l)
+ remove_weight_norm_modules(l)
for l in self.convs2:
- remove_weight_norm(l)
+ remove_weight_norm_modules(l)
class ResBlock2(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.convs = nn.ModuleList([
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ weight_norm_modules(Conv1dModel(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ weight_norm_modules(Conv1dModel(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
@@ -252,7 +215,7 @@ class ResBlock2(torch.nn.Module):
def remove_weight_norm(self):
for l in self.convs:
- remove_weight_norm(l)
+ remove_weight_norm_modules(l)
class Log(nn.Module):
@@ -303,7 +266,9 @@ class ResidualCouplingLayer(nn.Module):
n_layers,
p_dropout=0,
gin_channels=0,
- mean_only=False):
+ mean_only=False,
+ wn_sharing_parameter=None
+ ):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
@@ -315,7 +280,56 @@ class ResidualCouplingLayer(nn.Module):
self.mean_only = mean_only
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
- self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) if wn_sharing_parameter is None else wn_sharing_parameter
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
+ self.post.weight.data.zero_()
+ self.post.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
+ h = self.pre(x0) * x_mask
+ h = self.enc(h, x_mask, g=g)
+ stats = self.post(h) * x_mask
+ if not self.mean_only:
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
+ else:
+ m = stats
+ logs = torch.zeros_like(m)
+
+ if not reverse:
+ x1 = m + x1 * torch.exp(logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ logdet = torch.sum(logs, [1,2])
+ return x, logdet
+ else:
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ return x
+
+class TransformerCouplingLayer(nn.Module):
+ def __init__(self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ n_layers,
+ n_heads,
+ p_dropout=0,
+ filter_channels=0,
+ mean_only=False,
+ wn_sharing_parameter=None,
+ gin_channels = 0
+ ):
+ assert channels % 2 == 0, "channels should be divisible by 2"
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.half_channels = channels // 2
+ self.mean_only = mean_only
+
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
+ self.enc = attentions.FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = gin_channels) if wn_sharing_parameter is None else wn_sharing_parameter
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
diff --git a/onnxexport/model_onnx.py b/onnxexport/model_onnx.py
deleted file mode 100644
index e28bae95ec1e53aa05d06fc784ff86d55f228d60..0000000000000000000000000000000000000000
--- a/onnxexport/model_onnx.py
+++ /dev/null
@@ -1,335 +0,0 @@
-import torch
-from torch import nn
-from torch.nn import functional as F
-
-import modules.attentions as attentions
-import modules.commons as commons
-import modules.modules as modules
-
-from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
-from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
-
-import utils
-from modules.commons import init_weights, get_padding
-from vdecoder.hifigan.models import Generator
-from utils import f0_to_coarse
-
-
-class ResidualCouplingBlock(nn.Module):
- def __init__(self,
- channels,
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- n_flows=4,
- gin_channels=0):
- super().__init__()
- self.channels = channels
- self.hidden_channels = hidden_channels
- self.kernel_size = kernel_size
- self.dilation_rate = dilation_rate
- self.n_layers = n_layers
- self.n_flows = n_flows
- self.gin_channels = gin_channels
-
- self.flows = nn.ModuleList()
- for i in range(n_flows):
- self.flows.append(
- modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
- gin_channels=gin_channels, mean_only=True))
- self.flows.append(modules.Flip())
-
- def forward(self, x, x_mask, g=None, reverse=False):
- if not reverse:
- for flow in self.flows:
- x, _ = flow(x, x_mask, g=g, reverse=reverse)
- else:
- for flow in reversed(self.flows):
- x = flow(x, x_mask, g=g, reverse=reverse)
- return x
-
-
-class Encoder(nn.Module):
- def __init__(self,
- in_channels,
- out_channels,
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- gin_channels=0):
- super().__init__()
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.hidden_channels = hidden_channels
- self.kernel_size = kernel_size
- self.dilation_rate = dilation_rate
- self.n_layers = n_layers
- self.gin_channels = gin_channels
-
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
- self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
-
- def forward(self, x, x_lengths, g=None):
- # print(x.shape,x_lengths.shape)
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
- x = self.pre(x) * x_mask
- x = self.enc(x, x_mask, g=g)
- stats = self.proj(x) * x_mask
- m, logs = torch.split(stats, self.out_channels, dim=1)
- z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
- return z, m, logs, x_mask
-
-
-class TextEncoder(nn.Module):
- def __init__(self,
- out_channels,
- hidden_channels,
- kernel_size,
- n_layers,
- gin_channels=0,
- filter_channels=None,
- n_heads=None,
- p_dropout=None):
- super().__init__()
- self.out_channels = out_channels
- self.hidden_channels = hidden_channels
- self.kernel_size = kernel_size
- self.n_layers = n_layers
- self.gin_channels = gin_channels
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
- self.f0_emb = nn.Embedding(256, hidden_channels)
-
- self.enc_ = attentions.Encoder(
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout)
-
- def forward(self, x, x_mask, f0=None, z=None):
- x = x + self.f0_emb(f0).transpose(1, 2)
- x = self.enc_(x * x_mask, x_mask)
- stats = self.proj(x) * x_mask
- m, logs = torch.split(stats, self.out_channels, dim=1)
- z = (m + z * torch.exp(logs)) * x_mask
- return z, m, logs, x_mask
-
-
-class DiscriminatorP(torch.nn.Module):
- def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
- super(DiscriminatorP, self).__init__()
- self.period = period
- self.use_spectral_norm = use_spectral_norm
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
- self.convs = nn.ModuleList([
- norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
- norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
- norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
- norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
- norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
- ])
- self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
-
- def forward(self, x):
- fmap = []
-
- # 1d to 2d
- b, c, t = x.shape
- if t % self.period != 0: # pad first
- n_pad = self.period - (t % self.period)
- x = F.pad(x, (0, n_pad), "reflect")
- t = t + n_pad
- x = x.view(b, c, t // self.period, self.period)
-
- for l in self.convs:
- x = l(x)
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
- fmap.append(x)
- x = self.conv_post(x)
- fmap.append(x)
- x = torch.flatten(x, 1, -1)
-
- return x, fmap
-
-
-class DiscriminatorS(torch.nn.Module):
- def __init__(self, use_spectral_norm=False):
- super(DiscriminatorS, self).__init__()
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
- self.convs = nn.ModuleList([
- norm_f(Conv1d(1, 16, 15, 1, padding=7)),
- norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
- norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
- norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
- norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
- norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
- ])
- self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
-
- def forward(self, x):
- fmap = []
-
- for l in self.convs:
- x = l(x)
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
- fmap.append(x)
- x = self.conv_post(x)
- fmap.append(x)
- x = torch.flatten(x, 1, -1)
-
- return x, fmap
-
-
-class F0Decoder(nn.Module):
- def __init__(self,
- out_channels,
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout,
- spk_channels=0):
- super().__init__()
- self.out_channels = out_channels
- self.hidden_channels = hidden_channels
- self.filter_channels = filter_channels
- self.n_heads = n_heads
- self.n_layers = n_layers
- self.kernel_size = kernel_size
- self.p_dropout = p_dropout
- self.spk_channels = spk_channels
-
- self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
- self.decoder = attentions.FFT(
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout)
- self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
- self.f0_prenet = nn.Conv1d(1, hidden_channels, 3, padding=1)
- self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
-
- def forward(self, x, norm_f0, x_mask, spk_emb=None):
- x = torch.detach(x)
- if spk_emb is not None:
- x = x + self.cond(spk_emb)
- x += self.f0_prenet(norm_f0)
- x = self.prenet(x) * x_mask
- x = self.decoder(x * x_mask, x_mask)
- x = self.proj(x) * x_mask
- return x
-
-
-class SynthesizerTrn(nn.Module):
- """
- Synthesizer for Training
- """
-
- def __init__(self,
- spec_channels,
- segment_size,
- inter_channels,
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout,
- resblock,
- resblock_kernel_sizes,
- resblock_dilation_sizes,
- upsample_rates,
- upsample_initial_channel,
- upsample_kernel_sizes,
- gin_channels,
- ssl_dim,
- n_speakers,
- sampling_rate=44100,
- **kwargs):
- super().__init__()
- self.spec_channels = spec_channels
- self.inter_channels = inter_channels
- self.hidden_channels = hidden_channels
- self.filter_channels = filter_channels
- self.n_heads = n_heads
- self.n_layers = n_layers
- self.kernel_size = kernel_size
- self.p_dropout = p_dropout
- self.resblock = resblock
- self.resblock_kernel_sizes = resblock_kernel_sizes
- self.resblock_dilation_sizes = resblock_dilation_sizes
- self.upsample_rates = upsample_rates
- self.upsample_initial_channel = upsample_initial_channel
- self.upsample_kernel_sizes = upsample_kernel_sizes
- self.segment_size = segment_size
- self.gin_channels = gin_channels
- self.ssl_dim = ssl_dim
- self.emb_g = nn.Embedding(n_speakers, gin_channels)
-
- self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
-
- self.enc_p = TextEncoder(
- inter_channels,
- hidden_channels,
- filter_channels=filter_channels,
- n_heads=n_heads,
- n_layers=n_layers,
- kernel_size=kernel_size,
- p_dropout=p_dropout
- )
- hps = {
- "sampling_rate": sampling_rate,
- "inter_channels": inter_channels,
- "resblock": resblock,
- "resblock_kernel_sizes": resblock_kernel_sizes,
- "resblock_dilation_sizes": resblock_dilation_sizes,
- "upsample_rates": upsample_rates,
- "upsample_initial_channel": upsample_initial_channel,
- "upsample_kernel_sizes": upsample_kernel_sizes,
- "gin_channels": gin_channels,
- }
- self.dec = Generator(h=hps)
- self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
- self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
- self.f0_decoder = F0Decoder(
- 1,
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout,
- spk_channels=gin_channels
- )
- self.emb_uv = nn.Embedding(2, hidden_channels)
- self.predict_f0 = False
-
- def forward(self, c, f0, mel2ph, uv, noise=None, g=None):
-
- decoder_inp = F.pad(c, [0, 0, 1, 0])
- mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, c.shape[-1]])
- c = torch.gather(decoder_inp, 1, mel2ph_).transpose(1, 2) # [B, T, H]
-
- c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
- g = g.unsqueeze(0)
- g = self.emb_g(g).transpose(1, 2)
- x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
- x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2)
-
- if self.predict_f0:
- lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
- norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
- pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
- f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
-
- z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), z=noise)
- z = self.flow(z_p, c_mask, g=g, reverse=True)
- o = self.dec(z * c_mask, g=g, f0=f0)
- return o
diff --git a/diffusion/__init__.py b/pretrain/__init__.py
similarity index 100%
rename from diffusion/__init__.py
rename to pretrain/__init__.py
diff --git a/pretrain/checkpoint_best_legacy_500.pt b/pretrain/checkpoint_best_legacy_500.pt
index 9a2f13fb9c7047dff746e2d5d88c0d0a5aecf643..72f47ab58564f01d5cc8b05c63bdf96d944551ff 100644
--- a/pretrain/checkpoint_best_legacy_500.pt
+++ b/pretrain/checkpoint_best_legacy_500.pt
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:60d936ec5a566776fc392e69ad8b630d14eb588111233fe313436e200a7b187b
-size 1330114945
+oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
+size 189507909
diff --git a/pretrain/meta.py b/pretrain/meta.py
index cc35dd3c0dfe8436e7d635f2db507cedca75ed49..c591573a6aca9fefbb15561e76e7fcbac8e90961 100644
--- a/pretrain/meta.py
+++ b/pretrain/meta.py
@@ -12,9 +12,17 @@ def download_dict():
"url": "https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt",
"output": "./pretrain/hubert-soft-0d54a1f4.pt"
},
+ "whisper-ppg-small": {
+ "url": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
+ "output": "./pretrain/small.pt"
+ },
"whisper-ppg": {
"url": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"output": "./pretrain/medium.pt"
+ },
+ "whisper-ppg-large": {
+ "url": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
+ "output": "./pretrain/large-v2.pt"
}
}
diff --git a/pretrain/nsf_hifigan/.gitattributes b/pretrain/nsf_hifigan/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..382c42cde8152ff21085245e6da2cff66b783f3e
--- /dev/null
+++ b/pretrain/nsf_hifigan/.gitattributes
@@ -0,0 +1,2 @@
+model filter=lfs diff=lfs merge=lfs -text
+pretrain/*.pt filter=lfs diff=lfs merge=lfs -text
diff --git a/pretrain/nsf_hifigan/model b/pretrain/nsf_hifigan/model
new file mode 100644
index 0000000000000000000000000000000000000000..6ff8d81f7fe19ab507232cdd35667f3ccba9893c
--- /dev/null
+++ b/pretrain/nsf_hifigan/model
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2c576b63b7ed952161b70fad34e0562ace502ce689195520d8a2a6c051de29d6
+size 56825430
diff --git a/pretrain/rmvpe.pt b/pretrain/rmvpe.pt
new file mode 100644
index 0000000000000000000000000000000000000000..c70b9e1c71c721763a91e200607fb1d17494ae6c
--- /dev/null
+++ b/pretrain/rmvpe.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:19dc1809cf4cdb0a18db93441816bc327e14e5644b72eeaae5220560c6736fe2
+size 368492925
diff --git a/requirements.txt b/requirements.txt
index a441bdd77752cfe6b0af41a1a2d7a9c2ff5a279b..818d70715c551f8fd3d5c9d50544cb14da81634a 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,32 +1,23 @@
-ffmpeg-python
-Flask
-Flask_Cors
-gradio==3.18.0
-numpy
-playsound
-pydub
-requests
-scipy
-sounddevice
-SoundFile
-starlette
-torch
-torchaudio
-tqdm
-scikit-maad
-praat-parselmouth
-onnx
-onnxsim
-onnxoptimizer
-fairseq
-librosa
-edge-tts
-pyworld
-tensorboard
-tensorboardX
-transformers
-pyyaml
-pynvml
-ffmpeg
-torchcrepe
-
+edge_tts==6.1.9
+einops==0.7.0
+fairseq==0.12.2
+faiss_cpu==1.7.2
+ffmpeg==1.4
+gradio==4.21.0
+librosa==0.10.0
+local_attention==1.9.0
+matplotlib==3.6.0
+numpy==1.24.0
+onnxruntime==1.14.1
+parselmouth==1.1.1
+pynvml==11.5.0
+pyworld==0.3.0
+scikit_learn==1.4.1.post1
+scipy==1.12.0
+soundfile==0.12.1
+torch==2.2.1
+torchaudio==2.2.1
+torchcrepe==0.0.22
+tqdm==4.65.2
+transformers==4.23.1
+typing_extensions==4.10.0
diff --git a/utils.py b/utils.py
index 72946b6f6f1cbc37633655b5b1d9c6422ec9728d..95b6d8882867a81bc638237957dd3141b7bc1210 100644
--- a/utils.py
+++ b/utils.py
@@ -1,3 +1,4 @@
+import argparse
import glob
import json
import logging
@@ -5,11 +6,15 @@ import os
import re
import subprocess
import sys
+import traceback
+from multiprocessing import cpu_count
+import faiss
import librosa
import numpy as np
import torch
from scipy.io.wavfile import read
+from sklearn.cluster import MiniBatchKMeans
from torch.nn import functional as F
MATPLOTLIB_FLAG = False
@@ -23,7 +28,6 @@ f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
-
def normalize_f0(f0, x_mask, uv, random_scale=True):
# calculate means based on x_mask
uv_sum = torch.sum(uv, dim=1, keepdim=True)
@@ -39,8 +43,6 @@ def normalize_f0(f0, x_mask, uv, random_scale=True):
if torch.isnan(f0_norm).any():
exit(0)
return f0_norm * x_mask
-
-
def plot_data_to_numpy(x, y):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
@@ -64,132 +66,18 @@ def plot_data_to_numpy(x, y):
return data
-def interpolate_f0(f0):
- '''
- 对F0进行插值处理
- '''
-
- data = np.reshape(f0, (f0.size, 1))
-
- vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
- vuv_vector[data > 0.0] = 1.0
- vuv_vector[data <= 0.0] = 0.0
-
- ip_data = data
-
- frame_number = data.size
- last_value = 0.0
- for i in range(frame_number):
- if data[i] <= 0.0:
- j = i + 1
- for j in range(i + 1, frame_number):
- if data[j] > 0.0:
- break
- if j < frame_number - 1:
- if last_value > 0.0:
- step = (data[j] - data[i - 1]) / float(j - i)
- for k in range(i, j):
- ip_data[k] = data[i - 1] + step * (k - i + 1)
- else:
- for k in range(i, j):
- ip_data[k] = data[j]
- else:
- for k in range(i, frame_number):
- ip_data[k] = last_value
- else:
- ip_data[i] = data[i]
- last_value = data[i]
-
- return ip_data[:, 0], vuv_vector[:, 0]
-
-
-def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
- import parselmouth
- x = wav_numpy
- if p_len is None:
- p_len = x.shape[0] // hop_length
- else:
- assert abs(p_len - x.shape[0] // hop_length) < 4, "pad length error"
- time_step = hop_length / sampling_rate * 1000
- f0_min = 50
- f0_max = 1100
- f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
- time_step=time_step / 1000, voicing_threshold=0.6,
- pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
-
- pad_size = (p_len - len(f0) + 1) // 2
- if (pad_size > 0 or p_len - len(f0) - pad_size > 0):
- f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode='constant')
- return f0
-
-
-def resize_f0(x, target_len):
- source = np.array(x)
- source[source < 0.001] = np.nan
- target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
- source)
- res = np.nan_to_num(target)
- return res
-
-
-def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
- import pyworld
- if p_len is None:
- p_len = wav_numpy.shape[0] // hop_length
- f0, t = pyworld.dio(
- wav_numpy.astype(np.double),
- fs=sampling_rate,
- f0_ceil=800,
- frame_period=1000 * hop_length / sampling_rate,
- )
- f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
- for index, pitch in enumerate(f0):
- f0[index] = round(pitch, 1)
- return resize_f0(f0, p_len)
-
-
def f0_to_coarse(f0):
- is_torch = isinstance(f0, torch.Tensor)
- f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
-
- f0_mel[f0_mel <= 1] = 1
- f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
- f0_coarse = (f0_mel + 0.5).int() if is_torch else np.rint(f0_mel).astype(np.int)
- assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
- return f0_coarse
-
-
-def get_hubert_model():
- vec_path = "hubert/checkpoint_best_legacy_500.pt"
- print("load model(s) from {}".format(vec_path))
- from fairseq import checkpoint_utils
- models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
- [vec_path],
- suffix="",
- )
- model = models[0]
- model.eval()
- return model
-
-
-def get_hubert_content(hmodel, wav_16k_tensor):
- feats = wav_16k_tensor
- if feats.dim() == 2: # double channels
- feats = feats.mean(-1)
- assert feats.dim() == 1, feats.dim()
- feats = feats.view(1, -1)
- padding_mask = torch.BoolTensor(feats.shape).fill_(False)
- inputs = {
- "source": feats.to(wav_16k_tensor.device),
- "padding_mask": padding_mask.to(wav_16k_tensor.device),
- "output_layer": 9, # layer 9
- }
- with torch.no_grad():
- logits = hmodel.extract_features(**inputs)
- feats = hmodel.final_proj(logits[0])
- return feats.transpose(1, 2)
-
+ f0_mel = 1127 * (1 + f0 / 700).log()
+ a = (f0_bin - 2) / (f0_mel_max - f0_mel_min)
+ b = f0_mel_min * a - 1.
+ f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel)
+ # torch.clip_(f0_mel, min=1., max=float(f0_bin - 1))
+ f0_coarse = torch.round(f0_mel).long()
+ f0_coarse = f0_coarse * (f0_coarse > 0)
+ f0_coarse = f0_coarse + ((f0_coarse < 1) * 1)
+ f0_coarse = f0_coarse * (f0_coarse < f0_bin)
+ f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1))
+ return f0_coarse
def get_content(cmodel, y):
with torch.no_grad():
@@ -197,37 +85,72 @@ def get_content(cmodel, y):
c = c.transpose(1, 2)
return c
-
-def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
+def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs):
if f0_predictor == "pm":
from modules.F0Predictor.PMF0Predictor import PMF0Predictor
- f0_predictor_object = PMF0Predictor(hop_length=hop_length, sampling_rate=sampling_rate)
+ f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
elif f0_predictor == "crepe":
from modules.F0Predictor.CrepeF0Predictor import CrepeF0Predictor
- f0_predictor_object = CrepeF0Predictor(hop_length=hop_length, sampling_rate=sampling_rate,
- device=kargs["device"], threshold=kargs["threshold"])
+ f0_predictor_object = CrepeF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,device=kargs["device"],threshold=kargs["threshold"])
elif f0_predictor == "harvest":
from modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
- f0_predictor_object = HarvestF0Predictor(hop_length=hop_length, sampling_rate=sampling_rate)
+ f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
elif f0_predictor == "dio":
from modules.F0Predictor.DioF0Predictor import DioF0Predictor
- f0_predictor_object = DioF0Predictor(hop_length=hop_length, sampling_rate=sampling_rate)
+ f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
+ elif f0_predictor == "rmvpe":
+ from modules.F0Predictor.RMVPEF0Predictor import RMVPEF0Predictor
+ f0_predictor_object = RMVPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
+ elif f0_predictor == "fcpe":
+ from modules.F0Predictor.FCPEF0Predictor import FCPEF0Predictor
+ f0_predictor_object = FCPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
else:
raise Exception("Unknown f0 predictor")
return f0_predictor_object
-
-def get_speech_encoder(speech_encoder, device=None, **kargs):
+def get_speech_encoder(speech_encoder,device=None,**kargs):
if speech_encoder == "vec768l12":
from vencoder.ContentVec768L12 import ContentVec768L12
- speech_encoder_object = ContentVec768L12(device=device)
+ speech_encoder_object = ContentVec768L12(device = device)
elif speech_encoder == "vec256l9":
from vencoder.ContentVec256L9 import ContentVec256L9
- speech_encoder_object = ContentVec256L9(device=device)
+ speech_encoder_object = ContentVec256L9(device = device)
+ elif speech_encoder == "vec256l9-onnx":
+ from vencoder.ContentVec256L9_Onnx import ContentVec256L9_Onnx
+ speech_encoder_object = ContentVec256L9_Onnx(device = device)
+ elif speech_encoder == "vec256l12-onnx":
+ from vencoder.ContentVec256L12_Onnx import ContentVec256L12_Onnx
+ speech_encoder_object = ContentVec256L12_Onnx(device = device)
+ elif speech_encoder == "vec768l9-onnx":
+ from vencoder.ContentVec768L9_Onnx import ContentVec768L9_Onnx
+ speech_encoder_object = ContentVec768L9_Onnx(device = device)
+ elif speech_encoder == "vec768l12-onnx":
+ from vencoder.ContentVec768L12_Onnx import ContentVec768L12_Onnx
+ speech_encoder_object = ContentVec768L12_Onnx(device = device)
+ elif speech_encoder == "hubertsoft-onnx":
+ from vencoder.HubertSoft_Onnx import HubertSoft_Onnx
+ speech_encoder_object = HubertSoft_Onnx(device = device)
+ elif speech_encoder == "hubertsoft":
+ from vencoder.HubertSoft import HubertSoft
+ speech_encoder_object = HubertSoft(device = device)
+ elif speech_encoder == "whisper-ppg":
+ from vencoder.WhisperPPG import WhisperPPG
+ speech_encoder_object = WhisperPPG(device = device)
+ elif speech_encoder == "cnhubertlarge":
+ from vencoder.CNHubertLarge import CNHubertLarge
+ speech_encoder_object = CNHubertLarge(device = device)
+ elif speech_encoder == "dphubert":
+ from vencoder.DPHubert import DPHubert
+ speech_encoder_object = DPHubert(device = device)
+ elif speech_encoder == "whisper-ppg-large":
+ from vencoder.WhisperPPGLarge import WhisperPPGLarge
+ speech_encoder_object = WhisperPPGLarge(device = device)
+ elif speech_encoder == "wavlmbase+":
+ from vencoder.WavLMBasePlus import WavLMBasePlus
+ speech_encoder_object = WavLMBasePlus(device = device)
else:
raise Exception("Unknown speech encoder")
- return speech_encoder_object
-
+ return speech_encoder_object
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
assert os.path.isfile(checkpoint_path)
@@ -237,6 +160,7 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
+ model = model.to(list(saved_state_dict.values())[0].dtype)
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
@@ -248,10 +172,11 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False
# print("load", k)
new_state_dict[k] = saved_state_dict[k]
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
- except:
- print("error, %s is not in the checkpoint" % k)
- logger.info("%s is not in the checkpoint" % k)
- new_state_dict[k] = v
+ except Exception:
+ if "enc_q" not in k or "emb_g" not in k:
+ print("%s is not in the checkpoint,please check your checkpoint.If you're using pretrain model,just ignore this warning." % k)
+ logger.info("%s is not in the checkpoint" % k)
+ new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
@@ -263,177 +188,226 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
- logger.info("Saving model and optimizer state at iteration {} to {}".format(
- iteration, checkpoint_path))
- if hasattr(model, 'module'):
- state_dict = model.module.state_dict()
- else:
- state_dict = model.state_dict()
- torch.save({'model': state_dict,
- 'iteration': iteration,
- 'optimizer': optimizer.state_dict(),
- 'learning_rate': learning_rate}, checkpoint_path)
-
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
+ iteration, checkpoint_path))
+ if hasattr(model, 'module'):
+ state_dict = model.module.state_dict()
+ else:
+ state_dict = model.state_dict()
+ torch.save({'model': state_dict,
+ 'iteration': iteration,
+ 'optimizer': optimizer.state_dict(),
+ 'learning_rate': learning_rate}, checkpoint_path)
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
- """Freeing up space by deleting saved ckpts
-
- Arguments:
- path_to_models -- Path to the model directory
- n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
- sort_by_time -- True -> chronologically delete ckpts
- False -> lexicographically delete ckpts
- """
- ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
- name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
- time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
- sort_key = time_key if sort_by_time else name_key
- x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')],
- key=sort_key)
- to_del = [os.path.join(path_to_models, fn) for fn in
- (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
- del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
- del_routine = lambda x: [os.remove(x), del_info(x)]
- rs = [del_routine(fn) for fn in to_del]
-
+ """Freeing up space by deleting saved ckpts
+
+ Arguments:
+ path_to_models -- Path to the model directory
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
+ sort_by_time -- True -> chronologically delete ckpts
+ False -> lexicographically delete ckpts
+ """
+ ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
+ def name_key(_f):
+ return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
+ def time_key(_f):
+ return os.path.getmtime(os.path.join(path_to_models, _f))
+ sort_key = time_key if sort_by_time else name_key
+ def x_sorted(_x):
+ return sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")], key=sort_key)
+ to_del = [os.path.join(path_to_models, fn) for fn in
+ (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
+ def del_info(fn):
+ return logger.info(f".. Free up space by deleting ckpt {fn}")
+ def del_routine(x):
+ return [os.remove(x), del_info(x)]
+ [del_routine(fn) for fn in to_del]
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
- for k, v in scalars.items():
- writer.add_scalar(k, v, global_step)
- for k, v in histograms.items():
- writer.add_histogram(k, v, global_step)
- for k, v in images.items():
- writer.add_image(k, v, global_step, dataformats='HWC')
- for k, v in audios.items():
- writer.add_audio(k, v, global_step, audio_sampling_rate)
+ for k, v in scalars.items():
+ writer.add_scalar(k, v, global_step)
+ for k, v in histograms.items():
+ writer.add_histogram(k, v, global_step)
+ for k, v in images.items():
+ writer.add_image(k, v, global_step, dataformats='HWC')
+ for k, v in audios.items():
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
- f_list = glob.glob(os.path.join(dir_path, regex))
- f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
- x = f_list[-1]
- print(x)
- return x
+ f_list = glob.glob(os.path.join(dir_path, regex))
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
+ x = f_list[-1]
+ print(x)
+ return x
def plot_spectrogram_to_numpy(spectrogram):
- global MATPLOTLIB_FLAG
- if not MATPLOTLIB_FLAG:
- import matplotlib
- matplotlib.use("Agg")
- MATPLOTLIB_FLAG = True
- mpl_logger = logging.getLogger('matplotlib')
- mpl_logger.setLevel(logging.WARNING)
- import matplotlib.pylab as plt
- import numpy as np
-
- fig, ax = plt.subplots(figsize=(10, 2))
- im = ax.imshow(spectrogram, aspect="auto", origin="lower",
- interpolation='none')
- plt.colorbar(im, ax=ax)
- plt.xlabel("Frames")
- plt.ylabel("Channels")
- plt.tight_layout()
-
- fig.canvas.draw()
- data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
- data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
- plt.close()
- return data
+ global MATPLOTLIB_FLAG
+ if not MATPLOTLIB_FLAG:
+ import matplotlib
+ matplotlib.use("Agg")
+ MATPLOTLIB_FLAG = True
+ mpl_logger = logging.getLogger('matplotlib')
+ mpl_logger.setLevel(logging.WARNING)
+ import matplotlib.pylab as plt
+ import numpy as np
+
+ fig, ax = plt.subplots(figsize=(10,2))
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
+ interpolation='none')
+ plt.colorbar(im, ax=ax)
+ plt.xlabel("Frames")
+ plt.ylabel("Channels")
+ plt.tight_layout()
+
+ fig.canvas.draw()
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
+ plt.close()
+ return data
def plot_alignment_to_numpy(alignment, info=None):
- global MATPLOTLIB_FLAG
- if not MATPLOTLIB_FLAG:
- import matplotlib
- matplotlib.use("Agg")
- MATPLOTLIB_FLAG = True
- mpl_logger = logging.getLogger('matplotlib')
- mpl_logger.setLevel(logging.WARNING)
- import matplotlib.pylab as plt
- import numpy as np
-
- fig, ax = plt.subplots(figsize=(6, 4))
- im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
- interpolation='none')
- fig.colorbar(im, ax=ax)
- xlabel = 'Decoder timestep'
- if info is not None:
- xlabel += '\n\n' + info
- plt.xlabel(xlabel)
- plt.ylabel('Encoder timestep')
- plt.tight_layout()
-
- fig.canvas.draw()
- data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
- data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
- plt.close()
- return data
+ global MATPLOTLIB_FLAG
+ if not MATPLOTLIB_FLAG:
+ import matplotlib
+ matplotlib.use("Agg")
+ MATPLOTLIB_FLAG = True
+ mpl_logger = logging.getLogger('matplotlib')
+ mpl_logger.setLevel(logging.WARNING)
+ import matplotlib.pylab as plt
+ import numpy as np
+
+ fig, ax = plt.subplots(figsize=(6, 4))
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
+ interpolation='none')
+ fig.colorbar(im, ax=ax)
+ xlabel = 'Decoder timestep'
+ if info is not None:
+ xlabel += '\n\n' + info
+ plt.xlabel(xlabel)
+ plt.ylabel('Encoder timestep')
+ plt.tight_layout()
+
+ fig.canvas.draw()
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
+ plt.close()
+ return data
def load_wav_to_torch(full_path):
- sampling_rate, data = read(full_path)
- return torch.FloatTensor(data.astype(np.float32)), sampling_rate
+ sampling_rate, data = read(full_path)
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
- with open(filename, encoding='utf-8') as f:
- filepaths_and_text = [line.strip().split(split) for line in f]
- return filepaths_and_text
+ with open(filename, encoding='utf-8') as f:
+ filepaths_and_text = [line.strip().split(split) for line in f]
+ return filepaths_and_text
-def get_hparams_from_file(config_path):
+def get_hparams(init=True):
+ parser = argparse.ArgumentParser()
+ parser.add_argument('-c', '--config', type=str, default="./configs/config.json",
+ help='JSON file for configuration')
+ parser.add_argument('-m', '--model', type=str, required=True,
+ help='Model name')
+
+ args = parser.parse_args()
+ model_dir = os.path.join("./logs", args.model)
+
+ if not os.path.exists(model_dir):
+ os.makedirs(model_dir)
+
+ config_path = args.config
+ config_save_path = os.path.join(model_dir, "config.json")
+ if init:
with open(config_path, "r") as f:
- data = f.read()
- config = json.loads(data)
- hparams = HParams(**config)
- return hparams
+ data = f.read()
+ with open(config_save_path, "w") as f:
+ f.write(data)
+ else:
+ with open(config_save_path, "r") as f:
+ data = f.read()
+ config = json.loads(data)
+
+ hparams = HParams(**config)
+ hparams.model_dir = model_dir
+ return hparams
+
+
+def get_hparams_from_dir(model_dir):
+ config_save_path = os.path.join(model_dir, "config.json")
+ with open(config_save_path, "r") as f:
+ data = f.read()
+ config = json.loads(data)
+
+ hparams =HParams(**config)
+ hparams.model_dir = model_dir
+ return hparams
+
+
+def get_hparams_from_file(config_path, infer_mode = False):
+ with open(config_path, "r") as f:
+ data = f.read()
+ config = json.loads(data)
+ hparams =HParams(**config) if not infer_mode else InferHParams(**config)
+ return hparams
def check_git_hash(model_dir):
- source_dir = os.path.dirname(os.path.realpath(__file__))
- if not os.path.exists(os.path.join(source_dir, ".git")):
- logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
- source_dir
- ))
- return
-
- cur_hash = subprocess.getoutput("git rev-parse HEAD")
-
- path = os.path.join(model_dir, "githash")
- if os.path.exists(path):
- saved_hash = open(path).read()
- if saved_hash != cur_hash:
- logger.warn("git hash values are different. {}(saved) != {}(current)".format(
- saved_hash[:8], cur_hash[:8]))
- else:
- open(path, "w").write(cur_hash)
+ source_dir = os.path.dirname(os.path.realpath(__file__))
+ if not os.path.exists(os.path.join(source_dir, ".git")):
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
+ source_dir
+ ))
+ return
+
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
+
+ path = os.path.join(model_dir, "githash")
+ if os.path.exists(path):
+ saved_hash = open(path).read()
+ if saved_hash != cur_hash:
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
+ saved_hash[:8], cur_hash[:8]))
+ else:
+ open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
- global logger
- logger = logging.getLogger(os.path.basename(model_dir))
- logger.setLevel(logging.DEBUG)
+ global logger
+ logger = logging.getLogger(os.path.basename(model_dir))
+ logger.setLevel(logging.DEBUG)
+
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
+ if not os.path.exists(model_dir):
+ os.makedirs(model_dir)
+ h = logging.FileHandler(os.path.join(model_dir, filename))
+ h.setLevel(logging.DEBUG)
+ h.setFormatter(formatter)
+ logger.addHandler(h)
+ return logger
+
+
+def repeat_expand_2d(content, target_len, mode = 'left'):
+ # content : [h, t]
+ return repeat_expand_2d_left(content, target_len) if mode == 'left' else repeat_expand_2d_other(content, target_len, mode)
- formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
- if not os.path.exists(model_dir):
- os.makedirs(model_dir)
- h = logging.FileHandler(os.path.join(model_dir, filename))
- h.setLevel(logging.DEBUG)
- h.setFormatter(formatter)
- logger.addHandler(h)
- return logger
-def repeat_expand_2d(content, target_len):
+def repeat_expand_2d_left(content, target_len):
# content : [h, t]
src_len = content.shape[-1]
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
- temp = torch.arange(src_len + 1) * target_len / src_len
+ temp = torch.arange(src_len+1) * target_len / src_len
current_pos = 0
for i in range(target_len):
- if i < temp[current_pos + 1]:
+ if i < temp[current_pos+1]:
target[:, i] = content[:, current_pos]
else:
current_pos += 1
@@ -442,6 +416,27 @@ def repeat_expand_2d(content, target_len):
return target
+# mode : 'nearest'| 'linear'| 'bilinear'| 'bicubic'| 'trilinear'| 'area'
+def repeat_expand_2d_other(content, target_len, mode = 'nearest'):
+ # content : [h, t]
+ content = content[None,:,:]
+ target = F.interpolate(content,size=target_len,mode=mode)[0]
+ return target
+
+
+def mix_model(model_paths,mix_rate,mode):
+ mix_rate = torch.FloatTensor(mix_rate)/100
+ model_tem = torch.load(model_paths[0])
+ models = [torch.load(path)["model"] for path in model_paths]
+ if mode == 0:
+ mix_rate = F.softmax(mix_rate,dim=0)
+ for k in model_tem["model"].keys():
+ model_tem["model"][k] = torch.zeros_like(model_tem["model"][k])
+ for i,model in enumerate(models):
+ model_tem["model"][k] += model[k]*mix_rate[i]
+ torch.save(model_tem,os.path.join(os.path.curdir,"output.pth"))
+ return os.path.join(os.path.curdir,"output.pth")
+
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比 from RVC
# print(data1.max(),data2.max())
rms1 = librosa.feature.rms(
@@ -458,59 +453,120 @@ def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出
).squeeze()
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
data2 *= (
- torch.pow(rms1, torch.tensor(1 - rate))
- * torch.pow(rms2, torch.tensor(rate - 1))
+ torch.pow(rms1, torch.tensor(1 - rate))
+ * torch.pow(rms2, torch.tensor(rate - 1))
)
return data2
+def train_index(spk_name,root_dir = "dataset/44k/"): #from: RVC https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
+ n_cpu = cpu_count()
+ print("The feature index is constructing.")
+ exp_dir = os.path.join(root_dir,spk_name)
+ listdir_res = []
+ for file in os.listdir(exp_dir):
+ if ".wav.soft.pt" in file:
+ listdir_res.append(os.path.join(exp_dir,file))
+ if len(listdir_res) == 0:
+ raise Exception("You need to run preprocess_hubert_f0.py!")
+ npys = []
+ for name in sorted(listdir_res):
+ phone = torch.load(name)[0].transpose(-1,-2).numpy()
+ npys.append(phone)
+ big_npy = np.concatenate(npys, 0)
+ big_npy_idx = np.arange(big_npy.shape[0])
+ np.random.shuffle(big_npy_idx)
+ big_npy = big_npy[big_npy_idx]
+ if big_npy.shape[0] > 2e5:
+ # if(1):
+ info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
+ print(info)
+ try:
+ big_npy = (
+ MiniBatchKMeans(
+ n_clusters=10000,
+ verbose=True,
+ batch_size=256 * n_cpu,
+ compute_labels=False,
+ init="random",
+ )
+ .fit(big_npy)
+ .cluster_centers_
+ )
+ except Exception:
+ info = traceback.format_exc()
+ print(info)
+ n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
+ index = faiss.index_factory(big_npy.shape[1] , "IVF%s,Flat" % n_ivf)
+ index_ivf = faiss.extract_index_ivf(index) #
+ index_ivf.nprobe = 1
+ index.train(big_npy)
+ batch_size_add = 8192
+ for i in range(0, big_npy.shape[0], batch_size_add):
+ index.add(big_npy[i : i + batch_size_add])
+ # faiss.write_index(
+ # index,
+ # f"added_{spk_name}.index"
+ # )
+ print("Successfully build index")
+ return index
+
class HParams():
- def __init__(self, **kwargs):
- for k, v in kwargs.items():
- if type(v) == dict:
- v = HParams(**v)
- self[k] = v
+ def __init__(self, **kwargs):
+ for k, v in kwargs.items():
+ if type(v) == dict:
+ v = HParams(**v)
+ self[k] = v
+
+ def keys(self):
+ return self.__dict__.keys()
- def keys(self):
- return self.__dict__.keys()
+ def items(self):
+ return self.__dict__.items()
- def items(self):
- return self.__dict__.items()
+ def values(self):
+ return self.__dict__.values()
- def values(self):
- return self.__dict__.values()
+ def __len__(self):
+ return len(self.__dict__)
- def __len__(self):
- return len(self.__dict__)
+ def __getitem__(self, key):
+ return getattr(self, key)
- def __getitem__(self, key):
- return getattr(self, key)
+ def __setitem__(self, key, value):
+ return setattr(self, key, value)
- def __setitem__(self, key, value):
- return setattr(self, key, value)
+ def __contains__(self, key):
+ return key in self.__dict__
- def __contains__(self, key):
- return key in self.__dict__
+ def __repr__(self):
+ return self.__dict__.__repr__()
- def __repr__(self):
- return self.__dict__.__repr__()
+ def get(self,index):
+ return self.__dict__.get(index)
- def get(self, index):
- return self.__dict__.get(index)
+
+class InferHParams(HParams):
+ def __init__(self, **kwargs):
+ for k, v in kwargs.items():
+ if type(v) == dict:
+ v = InferHParams(**v)
+ self[k] = v
+
+ def __getattr__(self,index):
+ return self.get(index)
class Volume_Extractor:
- def __init__(self, hop_size=512):
+ def __init__(self, hop_size = 512):
self.hop_size = hop_size
-
- def extract(self, audio): # audio: 2d tensor array
- if not isinstance(audio, torch.Tensor):
- audio = torch.Tensor(audio)
+
+ def extract(self, audio): # audio: 2d tensor array
+ if not isinstance(audio,torch.Tensor):
+ audio = torch.Tensor(audio)
n_frames = int(audio.size(-1) // self.hop_size)
audio2 = audio ** 2
- audio2 = torch.nn.functional.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)),
- mode='reflect')
- volume = torch.FloatTensor(
- [torch.mean(audio2[:, int(n * self.hop_size): int((n + 1) * self.hop_size)]) for n in range(n_frames)])
+ audio2 = torch.nn.functional.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode = 'reflect')
+ volume = torch.nn.functional.unfold(audio2[:,None,None,:],(1,self.hop_size),stride=self.hop_size)[:,:,:n_frames].mean(dim=1)[0]
volume = torch.sqrt(volume)
return volume
diff --git a/vdecoder/hifigan/models.py b/vdecoder/hifigan/models.py
index 9747301f350bb269e62601017fe4633ce271b27e..107553368ff1798f72df21c6d5a965260f5a60fd 100644
--- a/vdecoder/hifigan/models.py
+++ b/vdecoder/hifigan/models.py
@@ -1,13 +1,15 @@
-import os
import json
-from .env import AttrDict
+import os
+
import numpy as np
import torch
-import torch.nn.functional as F
import torch.nn as nn
-from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
-from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
-from .utils import init_weights, get_padding
+import torch.nn.functional as F
+from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
+from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
+
+from .env import AttrDict
+from .utils import get_padding, init_weights
LRELU_SLOPE = 0.1
@@ -126,6 +128,7 @@ class SineGen(torch.nn.Module):
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
+ self.onnx = False
def _f02uv(self, f0):
# generate uv signal
@@ -191,37 +194,81 @@ class SineGen(torch.nn.Module):
sines = torch.cos(i_phase * 2 * np.pi)
return sines
- def forward(self, f0):
+ def forward(self, f0, upp=None):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
- with torch.no_grad():
- f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
- device=f0.device)
- # fundamental component
- fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
+ if self.onnx:
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+ else:
+ with torch.no_grad():
+ # fundamental component
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
- # generate sine waveforms
- sine_waves = self._f02sine(fn) * self.sine_amp
+ # generate sine waveforms
+ sine_waves = self._f02sine(fn) * self.sine_amp
- # generate uv signal
- # uv = torch.ones(f0.shape)
- # uv = uv * (f0 > self.voiced_threshold)
- uv = self._f02uv(f0)
+ # generate uv signal
+ # uv = torch.ones(f0.shape)
+ # uv = uv * (f0 > self.voiced_threshold)
+ uv = self._f02uv(f0)
- # noise: for unvoiced should be similar to sine_amp
- # std = self.sine_amp/3 -> max value ~ self.sine_amp
- # . for voiced regions is self.noise_std
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
- noise = noise_amp * torch.randn_like(sine_waves)
+ # noise: for unvoiced should be similar to sine_amp
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
+ # . for voiced regions is self.noise_std
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
- # first: set the unvoiced part to 0 by uv
- # then: additive noise
- sine_waves = sine_waves * uv + noise
- return sine_waves, uv, noise
+ # first: set the unvoiced part to 0 by uv
+ # then: additive noise
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
@@ -257,7 +304,7 @@ class SourceModuleHnNSF(torch.nn.Module):
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
- def forward(self, x):
+ def forward(self, x, upp=None):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
@@ -265,8 +312,8 @@ class SourceModuleHnNSF(torch.nn.Module):
noise_source (batchsize, length 1)
"""
# source for harmonic branch
- sine_wavs, uv, _ = self.l_sin_gen(x)
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs.to(self.l_linear.weight.dtype)))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
@@ -292,11 +339,11 @@ class Generator(torch.nn.Module):
c_cur = h["upsample_initial_channel"] // (2 ** (i + 1))
self.ups.append(weight_norm(
ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)),
- k, u, padding=(k - u) // 2)))
+ k, u, padding=(k - u +1 ) // 2)))
if i + 1 < len(h["upsample_rates"]): #
stride_f0 = np.prod(h["upsample_rates"][i + 1:])
self.noise_convs.append(Conv1d(
- 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
else:
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
self.resblocks = nn.ModuleList()
@@ -309,12 +356,19 @@ class Generator(torch.nn.Module):
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1)
+ self.upp = np.prod(h["upsample_rates"])
+ self.onnx = False
+
+ def OnnxExport(self):
+ self.onnx = True
+ self.m_source.l_sin_gen.onnx = True
def forward(self, x, f0, g=None):
# print(1,x.shape,f0.shape,f0[:, None].shape)
- f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
+ if not self.onnx:
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
# print(2,f0.shape)
- har_source, noi_source, uv = self.m_source(f0)
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
har_source = har_source.transpose(1, 2)
x = self.conv_pre(x)
x = x + self.cond(g)
@@ -353,7 +407,7 @@ class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
@@ -412,7 +466,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
diff --git a/vdecoder/hifigan/nvSTFT.py b/vdecoder/hifigan/nvSTFT.py
index 88597d62a505715091f9ba62d38bf0a85a31b95a..b3321b2ee3da28f43c2650ea011e14d5e1cdcc94 100644
--- a/vdecoder/hifigan/nvSTFT.py
+++ b/vdecoder/hifigan/nvSTFT.py
@@ -1,15 +1,13 @@
-import math
import os
-os.environ["LRU_CACHE_CAPACITY"] = "3"
-import random
+
+import librosa
+import numpy as np
+import soundfile as sf
import torch
import torch.utils.data
-import numpy as np
-import librosa
-from librosa.util import normalize
from librosa.filters import mel as librosa_mel_fn
-from scipy.io.wavfile import read
-import soundfile as sf
+
+os.environ["LRU_CACHE_CAPACITY"] = "3"
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
sampling_rate = None
diff --git a/vdecoder/hifigan/utils.py b/vdecoder/hifigan/utils.py
index 9c93c996d3cc73c30d71c1fc47056e4230f35c0f..e519e2b7ed8fe5f93266d21d727a30173699f88b 100644
--- a/vdecoder/hifigan/utils.py
+++ b/vdecoder/hifigan/utils.py
@@ -1,10 +1,10 @@
import glob
import os
-import matplotlib
-import torch
-from torch.nn.utils import weight_norm
+
# matplotlib.use("Agg")
import matplotlib.pylab as plt
+import torch
+from torch.nn.utils import weight_norm
def plot_spectrogram(spectrogram):
diff --git a/vdecoder/hifiganwithsnake/alias/__init__.py b/vdecoder/hifiganwithsnake/alias/__init__.py
index a2318b63198250856809c0cb46210a4147b829bc..be97a33248ae6378c6736586774abda11cfbdeba 100644
--- a/vdecoder/hifiganwithsnake/alias/__init__.py
+++ b/vdecoder/hifiganwithsnake/alias/__init__.py
@@ -1,6 +1,6 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
-from .filter import *
-from .resample import *
-from .act import *
\ No newline at end of file
+from .act import * # noqa: F403
+from .filter import * # noqa: F403
+from .resample import * # noqa: F403
diff --git a/vdecoder/hifiganwithsnake/alias/act.py b/vdecoder/hifiganwithsnake/alias/act.py
index 308344fb6ccbc39317c584a3ee1fb2f29084678e..e46b3467b73b90df51c1d19032b90d26595aca6e 100644
--- a/vdecoder/hifiganwithsnake/alias/act.py
+++ b/vdecoder/hifiganwithsnake/alias/act.py
@@ -4,10 +4,10 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
-
-from torch import sin, pow
+from torch import pow, sin
from torch.nn import Parameter
-from .resample import UpSample1d, DownSample1d
+
+from .resample import DownSample1d, UpSample1d
class Activation1d(nn.Module):
@@ -112,17 +112,18 @@ class SnakeAlias(nn.Module):
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
- down_kernel_size: int = 12):
+ down_kernel_size: int = 12,
+ C = None):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = SnakeBeta(channels, alpha_logscale=True)
- self.upsample = UpSample1d(up_ratio, up_kernel_size)
- self.downsample = DownSample1d(down_ratio, down_kernel_size)
+ self.upsample = UpSample1d(up_ratio, up_kernel_size, C)
+ self.downsample = DownSample1d(down_ratio, down_kernel_size, C)
# x: [B,C,T]
- def forward(self, x):
- x = self.upsample(x)
+ def forward(self, x, C=None):
+ x = self.upsample(x, C)
x = self.act(x)
x = self.downsample(x)
diff --git a/vdecoder/hifiganwithsnake/alias/filter.py b/vdecoder/hifiganwithsnake/alias/filter.py
index 7ad6ea87c1f10ddd94c544037791d7a4634d5ae1..3942eb3ae547a2f500d5c47defdd70cd29ea4655 100644
--- a/vdecoder/hifiganwithsnake/alias/filter.py
+++ b/vdecoder/hifiganwithsnake/alias/filter.py
@@ -1,10 +1,11 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
+import math
+
import torch
import torch.nn as nn
import torch.nn.functional as F
-import math
if 'sinc' in dir(torch):
sinc = torch.sinc
@@ -64,7 +65,8 @@ class LowPassFilter1d(nn.Module):
stride: int = 1,
padding: bool = True,
padding_mode: str = 'replicate',
- kernel_size: int = 12):
+ kernel_size: int = 12,
+ C=None):
# kernel_size should be even number for stylegan3 setup,
# in this implementation, odd number is also possible.
super().__init__()
@@ -81,15 +83,28 @@ class LowPassFilter1d(nn.Module):
self.padding_mode = padding_mode
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
self.register_buffer("filter", filter)
+ self.conv1d_block = None
+ if C is not None:
+ self.conv1d_block = [nn.Conv1d(C,C,kernel_size,stride=self.stride, groups=C, bias=False),]
+ self.conv1d_block[0].weight = nn.Parameter(self.filter.expand(C, -1, -1))
+ self.conv1d_block[0].requires_grad_(False)
#input [B, C, T]
def forward(self, x):
- _, C, _ = x.shape
+ if self.conv1d_block[0].weight.device != x.device:
+ self.conv1d_block[0] = self.conv1d_block[0].to(x.device)
+ if self.conv1d_block is None:
+ _, C, _ = x.shape
- if self.padding:
- x = F.pad(x, (self.pad_left, self.pad_right),
- mode=self.padding_mode)
- out = F.conv1d(x, self.filter.expand(C, -1, -1),
- stride=self.stride, groups=C)
+ if self.padding:
+ x = F.pad(x, (self.pad_left, self.pad_right),
+ mode=self.padding_mode)
+ out = F.conv1d(x, self.filter.expand(C, -1, -1),
+ stride=self.stride, groups=C)
+ else:
+ if self.padding:
+ x = F.pad(x, (self.pad_left, self.pad_right),
+ mode=self.padding_mode)
+ out = self.conv1d_block[0](x)
return out
\ No newline at end of file
diff --git a/vdecoder/hifiganwithsnake/alias/resample.py b/vdecoder/hifiganwithsnake/alias/resample.py
index 750e6c3402cc5ac939c4b9d075246562e0e1d1a7..a364403f0977bc8bcffbb4764081e4bd3619467a 100644
--- a/vdecoder/hifiganwithsnake/alias/resample.py
+++ b/vdecoder/hifiganwithsnake/alias/resample.py
@@ -3,12 +3,12 @@
import torch.nn as nn
from torch.nn import functional as F
-from .filter import LowPassFilter1d
-from .filter import kaiser_sinc_filter1d
+
+from .filter import LowPassFilter1d, kaiser_sinc_filter1d
class UpSample1d(nn.Module):
- def __init__(self, ratio=2, kernel_size=None):
+ def __init__(self, ratio=2, kernel_size=None, C=None):
super().__init__()
self.ratio = ratio
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
@@ -20,28 +20,51 @@ class UpSample1d(nn.Module):
half_width=0.6 / ratio,
kernel_size=self.kernel_size)
self.register_buffer("filter", filter)
+ self.conv_transpose1d_block = None
+ if C is not None:
+ self.conv_transpose1d_block = [nn.ConvTranspose1d(C,
+ C,
+ kernel_size=self.kernel_size,
+ stride=self.stride,
+ groups=C,
+ bias=False
+ ),]
+ self.conv_transpose1d_block[0].weight = nn.Parameter(self.filter.expand(C, -1, -1).clone())
+ self.conv_transpose1d_block[0].requires_grad_(False)
+
+
# x: [B, C, T]
- def forward(self, x):
- _, C, _ = x.shape
-
- x = F.pad(x, (self.pad, self.pad), mode='replicate')
- x = self.ratio * F.conv_transpose1d(
- x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
- x = x[..., self.pad_left:-self.pad_right]
-
+ def forward(self, x, C=None):
+ if self.conv_transpose1d_block[0].weight.device != x.device:
+ self.conv_transpose1d_block[0] = self.conv_transpose1d_block[0].to(x.device)
+ if self.conv_transpose1d_block is None:
+ if C is None:
+ _, C, _ = x.shape
+ # print("snake.conv_t.in:",x.shape)
+ x = F.pad(x, (self.pad, self.pad), mode='replicate')
+ x = self.ratio * F.conv_transpose1d(
+ x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
+ # print("snake.conv_t.out:",x.shape)
+ x = x[..., self.pad_left:-self.pad_right]
+ else:
+ x = F.pad(x, (self.pad, self.pad), mode='replicate')
+ x = self.ratio * self.conv_transpose1d_block[0](x)
+ x = x[..., self.pad_left:-self.pad_right]
return x
class DownSample1d(nn.Module):
- def __init__(self, ratio=2, kernel_size=None):
+ def __init__(self, ratio=2, kernel_size=None, C=None):
super().__init__()
self.ratio = ratio
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
half_width=0.6 / ratio,
stride=ratio,
- kernel_size=self.kernel_size)
+ kernel_size=self.kernel_size,
+ C=C)
+
def forward(self, x):
xx = self.lowpass(x)
diff --git a/vdecoder/hifiganwithsnake/models.py b/vdecoder/hifiganwithsnake/models.py
index 664547b0c3dd24f95da0356a056658a2f28dc928..08bbda9b77b095d81ca8d8a9e5e8ebe20fa9bcfa 100644
--- a/vdecoder/hifiganwithsnake/models.py
+++ b/vdecoder/hifiganwithsnake/models.py
@@ -1,15 +1,18 @@
-import os
import json
-from .env import AttrDict
+import os
+
import numpy as np
import torch
-import torch.nn.functional as F
import torch.nn as nn
-from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
-from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
-from .utils import init_weights, get_padding
+import torch.nn.functional as F
+from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
+from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
+
from vdecoder.hifiganwithsnake.alias.act import SnakeAlias
+from .env import AttrDict
+from .utils import get_padding, init_weights
+
LRELU_SLOPE = 0.1
@@ -33,7 +36,7 @@ def load_model(model_path, device='cuda'):
class ResBlock1(torch.nn.Module):
- def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), C=None):
super(ResBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
@@ -58,15 +61,15 @@ class ResBlock1(torch.nn.Module):
self.num_layers = len(self.convs1) + len(self.convs2)
self.activations = nn.ModuleList([
- SnakeAlias(channels) for _ in range(self.num_layers)
+ SnakeAlias(channels, C=C) for _ in range(self.num_layers)
])
- def forward(self, x):
+ def forward(self, x, DIM=None):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
- xt = a1(x)
+ xt = a1(x, DIM)
xt = c1(xt)
- xt = a2(xt)
+ xt = a2(xt, DIM)
xt = c2(xt)
x = xt + x
return x
@@ -79,7 +82,7 @@ class ResBlock1(torch.nn.Module):
class ResBlock2(torch.nn.Module):
- def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), C=None):
super(ResBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
@@ -92,12 +95,12 @@ class ResBlock2(torch.nn.Module):
self.num_layers = len(self.convs)
self.activations = nn.ModuleList([
- SnakeAlias(channels) for _ in range(self.num_layers)
+ SnakeAlias(channels, C=C) for _ in range(self.num_layers)
])
- def forward(self, x):
+ def forward(self, x, DIM=None):
for c,a in zip(self.convs, self.activations):
- xt = a(x)
+ xt = a(x, DIM)
xt = c(xt)
x = xt + x
return x
@@ -138,6 +141,7 @@ class SineGen(torch.nn.Module):
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
+ self.onnx = False
def _f02uv(self, f0):
# generate uv signal
@@ -203,37 +207,82 @@ class SineGen(torch.nn.Module):
sines = torch.cos(i_phase * 2 * np.pi)
return sines
- def forward(self, f0):
+ def forward(self, f0, upp=None):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
- with torch.no_grad():
- f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
- device=f0.device)
- # fundamental component
- fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
+
+ if self.onnx:
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+ else:
+ with torch.no_grad():
+ # fundamental component
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
- # generate sine waveforms
- sine_waves = self._f02sine(fn) * self.sine_amp
+ # generate sine waveforms
+ sine_waves = self._f02sine(fn) * self.sine_amp
- # generate uv signal
- # uv = torch.ones(f0.shape)
- # uv = uv * (f0 > self.voiced_threshold)
- uv = self._f02uv(f0)
+ # generate uv signal
+ # uv = torch.ones(f0.shape)
+ # uv = uv * (f0 > self.voiced_threshold)
+ uv = self._f02uv(f0)
- # noise: for unvoiced should be similar to sine_amp
- # std = self.sine_amp/3 -> max value ~ self.sine_amp
- # . for voiced regions is self.noise_std
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
- noise = noise_amp * torch.randn_like(sine_waves)
+ # noise: for unvoiced should be similar to sine_amp
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
+ # . for voiced regions is self.noise_std
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
- # first: set the unvoiced part to 0 by uv
- # then: additive noise
- sine_waves = sine_waves * uv + noise
- return sine_waves, uv, noise
+ # first: set the unvoiced part to 0 by uv
+ # then: additive noise
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
@@ -269,7 +318,7 @@ class SourceModuleHnNSF(torch.nn.Module):
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
- def forward(self, x):
+ def forward(self, x, upp=None):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
@@ -277,8 +326,8 @@ class SourceModuleHnNSF(torch.nn.Module):
noise_source (batchsize, length 1)
"""
# source for harmonic branch
- sine_wavs, uv, _ = self.l_sin_gen(x)
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs.to(self.l_linear.weight.dtype)))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
@@ -304,39 +353,47 @@ class Generator(torch.nn.Module):
c_cur = h["upsample_initial_channel"] // (2 ** (i + 1))
self.ups.append(weight_norm(
ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)),
- k, u, padding=(k - u) // 2)))
+ k, u, padding=(k - u + 1) // 2)))
if i + 1 < len(h["upsample_rates"]): #
stride_f0 = np.prod(h["upsample_rates"][i + 1:])
self.noise_convs.append(Conv1d(
- 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+ 1) // 2))
else:
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
self.resblocks = nn.ModuleList()
self.snakes = nn.ModuleList()
for i in range(len(self.ups)):
ch = h["upsample_initial_channel"] // (2 ** (i + 1))
- self.snakes.append(SnakeAlias(h["upsample_initial_channel"] // (2 ** (i))))
+ self.snakes.append(SnakeAlias(h["upsample_initial_channel"] // (2 ** (i)), C = h["upsample_initial_channel"] >> i))
for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])):
- self.resblocks.append(resblock(h, ch, k, d))
+ self.resblocks.append(resblock(h, ch, k, d, C = h["upsample_initial_channel"] >> (i + 1)))
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
- self.snake_post = SnakeAlias(ch)
+ self.snake_post = SnakeAlias(ch, C = h["upsample_initial_channel"] >> len(self.ups))
self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1)
+ self.upp = np.prod(h["upsample_rates"])
+ self.onnx = False
+
+ def OnnxExport(self):
+ self.onnx = True
+ self.m_source.l_sin_gen.onnx = True
def forward(self, x, f0, g=None):
# print(1,x.shape,f0.shape,f0[:, None].shape)
- f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
+ if not self.onnx:
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
# print(2,f0.shape)
- har_source, noi_source, uv = self.m_source(f0)
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
har_source = har_source.transpose(1, 2)
x = self.conv_pre(x)
x = x + self.cond(g)
# print(124,x.shape,har_source.shape)
for i in range(self.num_upsamples):
+ # print(f"self.snakes.{i}.pre:", x.shape)
x = self.snakes[i](x)
- # print(3,x.shape)
+ # print(f"self.snakes.{i}.after:", x.shape)
x = self.ups[i](x)
x_source = self.noise_convs[i](har_source)
# print(4,x_source.shape,har_source.shape,x.shape)
@@ -347,6 +404,7 @@ class Generator(torch.nn.Module):
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
+ # print(f"self.resblocks.{i}.after:", xs.shape)
x = xs / self.num_kernels
x = self.snake_post(x)
x = self.conv_post(x)
@@ -368,7 +426,7 @@ class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
@@ -427,7 +485,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
diff --git a/vdecoder/hifiganwithsnake/nvSTFT.py b/vdecoder/hifiganwithsnake/nvSTFT.py
index 88597d62a505715091f9ba62d38bf0a85a31b95a..b3321b2ee3da28f43c2650ea011e14d5e1cdcc94 100644
--- a/vdecoder/hifiganwithsnake/nvSTFT.py
+++ b/vdecoder/hifiganwithsnake/nvSTFT.py
@@ -1,15 +1,13 @@
-import math
import os
-os.environ["LRU_CACHE_CAPACITY"] = "3"
-import random
+
+import librosa
+import numpy as np
+import soundfile as sf
import torch
import torch.utils.data
-import numpy as np
-import librosa
-from librosa.util import normalize
from librosa.filters import mel as librosa_mel_fn
-from scipy.io.wavfile import read
-import soundfile as sf
+
+os.environ["LRU_CACHE_CAPACITY"] = "3"
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
sampling_rate = None
diff --git a/vdecoder/hifiganwithsnake/utils.py b/vdecoder/hifiganwithsnake/utils.py
index 9c93c996d3cc73c30d71c1fc47056e4230f35c0f..e519e2b7ed8fe5f93266d21d727a30173699f88b 100644
--- a/vdecoder/hifiganwithsnake/utils.py
+++ b/vdecoder/hifiganwithsnake/utils.py
@@ -1,10 +1,10 @@
import glob
import os
-import matplotlib
-import torch
-from torch.nn.utils import weight_norm
+
# matplotlib.use("Agg")
import matplotlib.pylab as plt
+import torch
+from torch.nn.utils import weight_norm
def plot_spectrogram(spectrogram):
diff --git a/vdecoder/nsf_hifigan/models.py b/vdecoder/nsf_hifigan/models.py
index c2c889ec2fbd215702298ba2b7c411c6f5630d80..8a35b134d814008c3990d019d1de502ff10dd86f 100644
--- a/vdecoder/nsf_hifigan/models.py
+++ b/vdecoder/nsf_hifigan/models.py
@@ -1,13 +1,15 @@
-import os
import json
-from .env import AttrDict
+import os
+
import numpy as np
import torch
-import torch.nn.functional as F
import torch.nn as nn
-from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
-from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
-from .utils import init_weights, get_padding
+import torch.nn.functional as F
+from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
+from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
+
+from .env import AttrDict
+from .utils import get_padding, init_weights
LRELU_SLOPE = 0.1
@@ -289,7 +291,7 @@ class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
@@ -348,7 +350,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
diff --git a/vdecoder/nsf_hifigan/nvSTFT.py b/vdecoder/nsf_hifigan/nvSTFT.py
index 62bd5a008f81929054f036c81955d5d73377f772..e756cca561a45bde435f36447e6681bfa17e34aa 100644
--- a/vdecoder/nsf_hifigan/nvSTFT.py
+++ b/vdecoder/nsf_hifigan/nvSTFT.py
@@ -1,16 +1,14 @@
-import math
import os
-os.environ["LRU_CACHE_CAPACITY"] = "3"
-import random
-import torch
-import torch.utils.data
-import numpy as np
+
import librosa
-from librosa.util import normalize
-from librosa.filters import mel as librosa_mel_fn
-from scipy.io.wavfile import read
+import numpy as np
import soundfile as sf
+import torch
import torch.nn.functional as F
+import torch.utils.data
+from librosa.filters import mel as librosa_mel_fn
+
+os.environ["LRU_CACHE_CAPACITY"] = "3"
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
sampling_rate = None
diff --git a/vdecoder/nsf_hifigan/utils.py b/vdecoder/nsf_hifigan/utils.py
index 84bff024f4d2e2de194b2a88ee7bbe5f0d33f67c..58d0e701d377e318fe0302743c27bdb4d6e089ec 100644
--- a/vdecoder/nsf_hifigan/utils.py
+++ b/vdecoder/nsf_hifigan/utils.py
@@ -1,10 +1,12 @@
import glob
import os
+
import matplotlib
+import matplotlib.pylab as plt
import torch
from torch.nn.utils import weight_norm
+
matplotlib.use("Agg")
-import matplotlib.pylab as plt
def plot_spectrogram(spectrogram):
diff --git a/vencoder/CNHubertLarge.py b/vencoder/CNHubertLarge.py
index 9db93781c36884c4096fa6fa5a12a95d385e80b8..f43694762f92c5d839d358825f157f5d1a4ff6f6 100644
--- a/vencoder/CNHubertLarge.py
+++ b/vencoder/CNHubertLarge.py
@@ -1,9 +1,12 @@
-from vencoder.encoder import SpeechEncoder
import torch
from fairseq import checkpoint_utils
+from vencoder.encoder import SpeechEncoder
+
+
class CNHubertLarge(SpeechEncoder):
- def __init__(self,vec_path = "pretrain/chinese-hubert-large-fairseq-ckpt.pt",device=None):
+ def __init__(self, vec_path="pretrain/chinese-hubert-large-fairseq-ckpt.pt", device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
self.hidden_dim = 1024
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
@@ -20,7 +23,7 @@ class CNHubertLarge(SpeechEncoder):
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
- feats = feats.mean(-1)
+ feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
@@ -29,5 +32,5 @@ class CNHubertLarge(SpeechEncoder):
"padding_mask": padding_mask.to(wav.device)
}
with torch.no_grad():
- logits = self.model.extract_features(**inputs)
+ logits = self.model.extract_features(**inputs)
return logits[0].transpose(1, 2)
\ No newline at end of file
diff --git a/vencoder/ContentVec256L12_Onnx.py b/vencoder/ContentVec256L12_Onnx.py
index 9ad5085e02654fd1fcfbdad7d476bfa9b763d2c6..466e6c128b88acdfb94392662086e6752d503a27 100644
--- a/vencoder/ContentVec256L12_Onnx.py
+++ b/vencoder/ContentVec256L12_Onnx.py
@@ -1,25 +1,30 @@
-from vencoder.encoder import SpeechEncoder
import onnxruntime
import torch
+from vencoder.encoder import SpeechEncoder
+
+
class ContentVec256L12_Onnx(SpeechEncoder):
- def __init__(self,vec_path = "pretrain/vec-256-layer-12.onnx",device=None):
+ def __init__(self, vec_path="pretrain/vec-256-layer-12.onnx", device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
self.hidden_dim = 256
if device is None:
self.dev = torch.device("cpu")
else:
self.dev = torch.device(device)
- if device == 'cpu' or device == torch.device("cpu") or device is None:
- providers = ['CPUExecutionProvider']
- elif device == 'cuda' or device == torch.device("cuda"):
+
+ if device == 'cuda' or device == torch.device("cuda"):
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
+ else:
+ providers = ['CPUExecutionProvider']
+
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
- feats = feats.mean(-1)
+ feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
feats = feats.unsqueeze(0).cpu().detach().numpy()
diff --git a/vencoder/ContentVec256L9.py b/vencoder/ContentVec256L9.py
index e3bb106830aa023fe3b6ba1b1d72ec7dcfcfa403..c973090dd4cdaa3d8ca07d9007c26633883c36a7 100644
--- a/vencoder/ContentVec256L9.py
+++ b/vencoder/ContentVec256L9.py
@@ -1,14 +1,16 @@
-from vencoder.encoder import SpeechEncoder
import torch
from fairseq import checkpoint_utils
+from vencoder.encoder import SpeechEncoder
+
class ContentVec256L9(SpeechEncoder):
def __init__(self, vec_path="pretrain/checkpoint_best_legacy_500.pt", device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
- [vec_path],
- suffix="",
+ [vec_path],
+ suffix="",
)
self.hidden_dim = 256
if device is None:
@@ -26,9 +28,9 @@ class ContentVec256L9(SpeechEncoder):
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
- "source": feats.to(wav.device),
- "padding_mask": padding_mask.to(wav.device),
- "output_layer": 9, # layer 9
+ "source": feats.to(wav.device),
+ "padding_mask": padding_mask.to(wav.device),
+ "output_layer": 9, # layer 9
}
with torch.no_grad():
logits = self.model.extract_features(**inputs)
diff --git a/vencoder/ContentVec256L9_Onnx.py b/vencoder/ContentVec256L9_Onnx.py
index fae2b928252801795b038f51451b234e007f6f03..a27e1f76655d9dc9fcc41d05d11b4a1ac5d85b90 100644
--- a/vencoder/ContentVec256L9_Onnx.py
+++ b/vencoder/ContentVec256L9_Onnx.py
@@ -1,9 +1,12 @@
-from vencoder.encoder import SpeechEncoder
import onnxruntime
import torch
+from vencoder.encoder import SpeechEncoder
+
+
class ContentVec256L9_Onnx(SpeechEncoder):
- def __init__(self,vec_path = "pretrain/vec-256-layer-9.onnx",device=None):
+ def __init__(self, vec_path="pretrain/vec-256-layer-9.onnx", device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
self.hidden_dim = 256
if device is None:
@@ -19,10 +22,11 @@ class ContentVec256L9_Onnx(SpeechEncoder):
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
- feats = feats.mean(-1)
+ feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
feats = feats.unsqueeze(0).cpu().detach().numpy()
onnx_input = {self.model.get_inputs()[0].name: feats}
logits = self.model.run(None, onnx_input)
- return torch.tensor(logits[0]).transpose(1, 2).to(self.dev)
\ No newline at end of file
+ return torch.tensor(logits[0]).transpose(1, 2).to(self.dev)
+
\ No newline at end of file
diff --git a/vencoder/ContentVec768L12.py b/vencoder/ContentVec768L12.py
index 8e73bede5755386284a8f15b08a6f6ffbc4b1021..066b824b68447b5c860730c9f11b7be415068b46 100644
--- a/vencoder/ContentVec768L12.py
+++ b/vencoder/ContentVec768L12.py
@@ -1,15 +1,17 @@
-from vencoder.encoder import SpeechEncoder
import torch
from fairseq import checkpoint_utils
+from vencoder.encoder import SpeechEncoder
+
class ContentVec768L12(SpeechEncoder):
def __init__(self, vec_path="pretrain/checkpoint_best_legacy_500.pt", device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
self.hidden_dim = 768
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
- [vec_path],
- suffix="",
+ [vec_path],
+ suffix="",
)
if device is None:
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -26,9 +28,9 @@ class ContentVec768L12(SpeechEncoder):
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
- "source": feats.to(wav.device),
- "padding_mask": padding_mask.to(wav.device),
- "output_layer": 12, # layer 12
+ "source": feats.to(wav.device),
+ "padding_mask": padding_mask.to(wav.device),
+ "output_layer": 12, # layer 12
}
with torch.no_grad():
logits = self.model.extract_features(**inputs)
diff --git a/vencoder/ContentVec768L12_Onnx.py b/vencoder/ContentVec768L12_Onnx.py
index 8dde0f173ed60169282128cc51eb1c200c5d82c5..e737594526fd09f19353b85c11d4c357a325af48 100644
--- a/vencoder/ContentVec768L12_Onnx.py
+++ b/vencoder/ContentVec768L12_Onnx.py
@@ -1,28 +1,33 @@
-from vencoder.encoder import SpeechEncoder
import onnxruntime
import torch
+from vencoder.encoder import SpeechEncoder
+
+
class ContentVec768L12_Onnx(SpeechEncoder):
- def __init__(self,vec_path = "pretrain/vec-768-layer-12.onnx",device=None):
+ def __init__(self, vec_path="pretrain/vec-768-layer-12.onnx", device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
self.hidden_dim = 768
if device is None:
self.dev = torch.device("cpu")
else:
self.dev = torch.device(device)
- if device == 'cpu' or device == torch.device("cpu") or device is None:
- providers = ['CPUExecutionProvider']
- elif device == 'cuda' or device == torch.device("cuda"):
+
+ if device == 'cuda' or device == torch.device("cuda"):
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
+ else:
+ providers = ['CPUExecutionProvider']
+
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
- feats = feats.mean(-1)
+ feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
feats = feats.unsqueeze(0).cpu().detach().numpy()
onnx_input = {self.model.get_inputs()[0].name: feats}
logits = self.model.run(None, onnx_input)
- return torch.tensor(logits[0]).transpose(1, 2).to(self.dev)
\ No newline at end of file
+ return torch.tensor(logits[0]).transpose(1, 2).to(self.dev)
diff --git a/vencoder/ContentVec768L9_Onnx.py b/vencoder/ContentVec768L9_Onnx.py
index 7cdac4cd93478d3ddddb4b76dd9d9ccc5d1af2d4..3bd0f337bbf5fa261ea43adfab2377fced7c9e7c 100644
--- a/vencoder/ContentVec768L9_Onnx.py
+++ b/vencoder/ContentVec768L9_Onnx.py
@@ -1,28 +1,33 @@
-from vencoder.encoder import SpeechEncoder
import onnxruntime
import torch
+from vencoder.encoder import SpeechEncoder
+
+
class ContentVec768L9_Onnx(SpeechEncoder):
def __init__(self,vec_path = "pretrain/vec-768-layer-9.onnx",device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
self.hidden_dim = 768
if device is None:
self.dev = torch.device("cpu")
else:
self.dev = torch.device(device)
- if device == 'cpu' or device == torch.device("cpu") or device is None:
- providers = ['CPUExecutionProvider']
- elif device == 'cuda' or device == torch.device("cuda"):
+
+ if device == 'cuda' or device == torch.device("cuda"):
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
+ else:
+ providers = ['CPUExecutionProvider']
+
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
- feats = feats.mean(-1)
+ feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
feats = feats.unsqueeze(0).cpu().detach().numpy()
onnx_input = {self.model.get_inputs()[0].name: feats}
logits = self.model.run(None, onnx_input)
- return torch.tensor(logits[0]).transpose(1, 2).to(self.dev)
\ No newline at end of file
+ return torch.tensor(logits[0]).transpose(1, 2).to(self.dev)
diff --git a/vencoder/DPHubert.py b/vencoder/DPHubert.py
index 95b98b8b2e08e76139ce652bbbdb60dc42248a19..130064ff3ea5c24017be2f0faa204fc4c7dbd078 100644
--- a/vencoder/DPHubert.py
+++ b/vencoder/DPHubert.py
@@ -1,9 +1,12 @@
-from vencoder.encoder import SpeechEncoder
import torch
+
from vencoder.dphubert.model import wav2vec2_model
+from vencoder.encoder import SpeechEncoder
+
class DPHubert(SpeechEncoder):
- def __init__(self,vec_path = "pretrain/DPHuBERT-sp0.75.pth",device=None):
+ def __init__(self, vec_path="pretrain/DPHuBERT-sp0.75.pth", device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
if device is None:
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -17,10 +20,10 @@ class DPHubert(SpeechEncoder):
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
- feats = feats.mean(-1)
+ feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
- feats = feats[None,:]
+ feats = feats[None, :]
with torch.no_grad():
with torch.inference_mode():
- units = self.model(feats)[0]
- return units.transpose(1,2)
+ units = self.model(feats)[0]
+ return units.transpose(1,2)
diff --git a/vencoder/HubertSoft.py b/vencoder/HubertSoft.py
index c7155e9edd8b3d898643f59111cd0c7a83067749..423c159c44f0e5cb820a911a47b71ae1478d725d 100644
--- a/vencoder/HubertSoft.py
+++ b/vencoder/HubertSoft.py
@@ -1,8 +1,12 @@
-from vencoder.encoder import SpeechEncoder
import torch
+
+from vencoder.encoder import SpeechEncoder
from vencoder.hubert import hubert_model
+
+
class HubertSoft(SpeechEncoder):
- def __init__(self,vec_path = "pretrain/hubert-soft-0d54a1f4.pt",device=None):
+ def __init__(self, vec_path="pretrain/hubert-soft-0d54a1f4.pt", device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
hubert_soft = hubert_model.hubert_soft(vec_path)
if device is None:
@@ -15,10 +19,10 @@ class HubertSoft(SpeechEncoder):
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
- feats = feats.mean(-1)
+ feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats[None,None,:]
with torch.no_grad():
with torch.inference_mode():
- units = self.model.units(feats)
- return units.transpose(1,2)
+ units = self.model.units(feats)
+ return units.transpose(1,2)
diff --git a/vencoder/HubertSoft_Onnx.py b/vencoder/HubertSoft_Onnx.py
index 06f10a4ca79c429ed59ab9743578128e8db506cc..038d78e8ffa0804cb63b146f8122b3f2bba2f637 100644
--- a/vencoder/HubertSoft_Onnx.py
+++ b/vencoder/HubertSoft_Onnx.py
@@ -1,28 +1,33 @@
-from vencoder.encoder import SpeechEncoder
import onnxruntime
import torch
+from vencoder.encoder import SpeechEncoder
+
+
class HubertSoft_Onnx(SpeechEncoder):
- def __init__(self,vec_path = "pretrain/hubert-soft.onnx",device=None):
+ def __init__(self, vec_path="pretrain/hubert-soft.onnx", device=None):
+ super().__init__()
print("load model(s) from {}".format(vec_path))
self.hidden_dim = 256
if device is None:
self.dev = torch.device("cpu")
else:
self.dev = torch.device(device)
- if device == 'cpu' or device == torch.device("cpu") or device is None:
- providers = ['CPUExecutionProvider']
- elif device == 'cuda' or device == torch.device("cuda"):
+
+ if device == 'cuda' or device == torch.device("cuda"):
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
+ else:
+ providers = ['CPUExecutionProvider']
+
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
- feats = feats.mean(-1)
+ feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
feats = feats.unsqueeze(0).cpu().detach().numpy()
onnx_input = {self.model.get_inputs()[0].name: feats}
logits = self.model.run(None, onnx_input)
- return torch.tensor(logits[0]).transpose(1, 2).to(self.dev)
\ No newline at end of file
+ return torch.tensor(logits[0]).transpose(1, 2).to(self.dev)
diff --git a/vencoder/WavLMBasePlus.py b/vencoder/WavLMBasePlus.py
new file mode 100644
index 0000000000000000000000000000000000000000..99df15be73c0c4774cea83a376f79fb68405bfa1
--- /dev/null
+++ b/vencoder/WavLMBasePlus.py
@@ -0,0 +1,32 @@
+import torch
+
+from vencoder.encoder import SpeechEncoder
+from vencoder.wavlm.WavLM import WavLM, WavLMConfig
+
+
+class WavLMBasePlus(SpeechEncoder):
+ def __init__(self, vec_path="pretrain/WavLM-Base+.pt", device=None):
+ super().__init__()
+ print("load model(s) from {}".format(vec_path))
+ checkpoint = torch.load(vec_path)
+ self.cfg = WavLMConfig(checkpoint['cfg'])
+ if device is None:
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+ else:
+ self.dev = torch.device(device)
+ self.hidden_dim = self.cfg.encoder_embed_dim
+ self.model = WavLM(self.cfg)
+ self.model.load_state_dict(checkpoint['model'])
+ self.model.to(self.dev).eval()
+
+ def encoder(self, wav):
+ feats = wav
+ if feats.dim() == 2: # double channels
+ feats = feats.mean(-1)
+ assert feats.dim() == 1, feats.dim()
+ if self.cfg.normalize:
+ feats = torch.nn.functional.layer_norm(feats, feats.shape)
+ with torch.no_grad():
+ with torch.inference_mode():
+ units = self.model.extract_features(feats[None, :])[0]
+ return units.transpose(1, 2)
diff --git a/vencoder/WhisperPPG.py b/vencoder/WhisperPPG.py
index aa988b0a6d05696ea519d1652e5801302ba8a6c6..86af53e69b5f60f143a4acce0949c24812e327d1 100644
--- a/vencoder/WhisperPPG.py
+++ b/vencoder/WhisperPPG.py
@@ -1,12 +1,13 @@
-from vencoder.encoder import SpeechEncoder
import torch
-from vencoder.whisper.model import Whisper, ModelDimensions
-from vencoder.whisper.audio import pad_or_trim, log_mel_spectrogram
+from vencoder.encoder import SpeechEncoder
+from vencoder.whisper.audio import log_mel_spectrogram, pad_or_trim
+from vencoder.whisper.model import ModelDimensions, Whisper
class WhisperPPG(SpeechEncoder):
- def __init__(self,vec_path = "pretrain/medium.pt",device=None):
+ def __init__(self, vec_path="pretrain/medium.pt", device=None):
+ super().__init__()
if device is None:
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
@@ -26,5 +27,5 @@ class WhisperPPG(SpeechEncoder):
mel = log_mel_spectrogram(audio).to(self.dev)
with torch.no_grad():
ppg = self.model.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy()
- ppg = torch.FloatTensor(ppg[:ppgln,]).to(self.dev)
- return ppg[None,:,:].transpose(1, 2)
+ ppg = torch.FloatTensor(ppg[:ppgln, ]).to(self.dev)
+ return ppg[None, :, :].transpose(1, 2)
diff --git a/vencoder/WhisperPPGLarge.py b/vencoder/WhisperPPGLarge.py
index cab1ca646a1559c2a05b24ec38474408f27b3f08..e1d3ea212bff50c11c2711077c67800b06318e3a 100644
--- a/vencoder/WhisperPPGLarge.py
+++ b/vencoder/WhisperPPGLarge.py
@@ -1,12 +1,13 @@
-from vencoder.encoder import SpeechEncoder
import torch
-from vencoder.whisper.model import Whisper, ModelDimensions
-from vencoder.whisper.audio import pad_or_trim, log_mel_spectrogram
+from vencoder.encoder import SpeechEncoder
+from vencoder.whisper.audio import log_mel_spectrogram, pad_or_trim
+from vencoder.whisper.model import ModelDimensions, Whisper
class WhisperPPGLarge(SpeechEncoder):
- def __init__(self,vec_path = "pretrain/large-v2.pt",device=None):
+ def __init__(self, vec_path="pretrain/large-v2.pt", device=None):
+ super().__init__()
if device is None:
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
@@ -26,5 +27,5 @@ class WhisperPPGLarge(SpeechEncoder):
mel = log_mel_spectrogram(audio).to(self.dev)
with torch.no_grad():
ppg = self.model.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy()
- ppg = torch.FloatTensor(ppg[:ppgln,]).to(self.dev)
- return ppg[None,:,:].transpose(1, 2)
+ ppg = torch.FloatTensor(ppg[:ppgln, ]).to(self.dev)
+ return ppg[None, :, :].transpose(1, 2)
diff --git a/vencoder/dphubert/components.py b/vencoder/dphubert/components.py
index 0cc82a35581db1289a7ced76f1793e907ffbe05f..be5cc8ce28f11f4f1339578a9d2658740f103283 100644
--- a/vencoder/dphubert/components.py
+++ b/vencoder/dphubert/components.py
@@ -5,19 +5,19 @@ https://github.com/pytorch/audio/blob/main/torchaudio/models/wav2vec2/components
"""
+import math
from collections import defaultdict
from typing import List, Optional, Tuple
-import math
import torch
-from torch import nn, Tensor
-from torch.nn import Module, Parameter
+from torch import Tensor, nn
+from torch.nn import Module
from .hardconcrete import HardConcrete
from .pruning_utils import (
- prune_linear_layer,
prune_conv1d_layer,
prune_layer_norm,
+ prune_linear_layer,
)
diff --git a/vencoder/dphubert/utils/import_huggingface_wavlm.py b/vencoder/dphubert/utils/import_huggingface_wavlm.py
index 1a2ea31c14df5450298ddc5e1f56c98769144828..24a3f38ae9cc08e19010b2876b19dc9082873377 100644
--- a/vencoder/dphubert/utils/import_huggingface_wavlm.py
+++ b/vencoder/dphubert/utils/import_huggingface_wavlm.py
@@ -10,7 +10,7 @@ from typing import Any, Dict
from torch.nn import Module
-from ..model import wav2vec2_model, Wav2Vec2Model, wavlm_model
+from ..model import Wav2Vec2Model, wav2vec2_model, wavlm_model
_LG = logging.getLogger(__name__)
diff --git a/vencoder/encoder.py b/vencoder/encoder.py
index 2cf5678533cf16f2e81248535d35e4c3c1c5799a..9ad120da34893d64b47b8ebeeaaed1f822a2e0be 100644
--- a/vencoder/encoder.py
+++ b/vencoder/encoder.py
@@ -1,12 +1,13 @@
class SpeechEncoder(object):
- def __init__(self,vec_path = "pretrain/checkpoint_best_legacy_500.pt",device=None):
- self.model = None #This is Model
+ def __init__(self, vec_path="pretrain/checkpoint_best_legacy_500.pt", device=None):
+ self.model = None # This is Model
self.hidden_dim = 768
pass
- def encoder(self,wav):
- '''
- input: wav:[batchsize,signal_length]
+
+ def encoder(self, wav):
+ """
+ input: wav:[signal_length]
output: embedding:[batchsize,hidden_dim,wav_frame]
- '''
- pass
\ No newline at end of file
+ """
+ pass
diff --git a/vencoder/wavlm/WavLM.py b/vencoder/wavlm/WavLM.py
new file mode 100644
index 0000000000000000000000000000000000000000..5a3986fdcc00033a9e8f1bfcd25df3799f40ed90
--- /dev/null
+++ b/vencoder/wavlm/WavLM.py
@@ -0,0 +1,741 @@
+# --------------------------------------------------------
+# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
+# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
+# Copyright (c) 2021 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Based on fairseq code bases
+# https://github.com/pytorch/fairseq
+# --------------------------------------------------------
+
+import logging
+import math
+from typing import List, Optional, Tuple
+
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn import LayerNorm
+
+from vencoder.wavlm.modules import (
+ Fp32GroupNorm,
+ Fp32LayerNorm,
+ GLU_Linear,
+ GradMultiply,
+ MultiheadAttention,
+ SamePad,
+ TransposeLast,
+ get_activation_fn,
+ init_bert_params,
+)
+
+logger = logging.getLogger(__name__)
+
+
+def compute_mask_indices(
+ shape: Tuple[int, int],
+ padding_mask: Optional[torch.Tensor],
+ mask_prob: float,
+ mask_length: int,
+ mask_type: str = "static",
+ mask_other: float = 0.0,
+ min_masks: int = 0,
+ no_overlap: bool = False,
+ min_space: int = 0,
+) -> np.ndarray:
+ """
+ Computes random mask spans for a given shape
+
+ Args:
+ shape: the the shape for which to compute masks.
+ should be of size 2 where first element is batch size and 2nd is timesteps
+ padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
+ mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
+ number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
+ however due to overlaps, the actual number will be smaller (unless no_overlap is True)
+ mask_type: how to compute mask lengths
+ static = fixed size
+ uniform = sample from uniform distribution [mask_other, mask_length*2]
+ normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
+ poisson = sample from possion distribution with lambda = mask length
+ min_masks: minimum number of masked spans
+ no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
+ min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
+ """
+
+ bsz, all_sz = shape
+ mask = np.full((bsz, all_sz), False)
+
+ all_num_mask = int(
+ # add a random number for probabilistic rounding
+ mask_prob * all_sz / float(mask_length)
+ + np.random.rand()
+ )
+
+ all_num_mask = max(min_masks, all_num_mask)
+
+ mask_idcs = []
+ for i in range(bsz):
+ if padding_mask is not None:
+ sz = all_sz - padding_mask[i].long().sum().item()
+ num_mask = int(
+ # add a random number for probabilistic rounding
+ mask_prob * sz / float(mask_length)
+ + np.random.rand()
+ )
+ num_mask = max(min_masks, num_mask)
+ else:
+ sz = all_sz
+ num_mask = all_num_mask
+
+ if mask_type == "static":
+ lengths = np.full(num_mask, mask_length)
+ elif mask_type == "uniform":
+ lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
+ elif mask_type == "normal":
+ lengths = np.random.normal(mask_length, mask_other, size=num_mask)
+ lengths = [max(1, int(round(x))) for x in lengths]
+ elif mask_type == "poisson":
+ lengths = np.random.poisson(mask_length, size=num_mask)
+ lengths = [int(round(x)) for x in lengths]
+ else:
+ raise Exception("unknown mask selection " + mask_type)
+
+ if sum(lengths) == 0:
+ lengths[0] = min(mask_length, sz - 1)
+
+ if no_overlap:
+ mask_idc = []
+
+ def arrange(s, e, length, keep_length):
+ span_start = np.random.randint(s, e - length)
+ mask_idc.extend(span_start + i for i in range(length))
+
+ new_parts = []
+ if span_start - s - min_space >= keep_length:
+ new_parts.append((s, span_start - min_space + 1))
+ if e - span_start - keep_length - min_space > keep_length:
+ new_parts.append((span_start + length + min_space, e))
+ return new_parts
+
+ parts = [(0, sz)]
+ min_length = min(lengths)
+ for length in sorted(lengths, reverse=True):
+ lens = np.fromiter(
+ (e - s if e - s >= length + min_space else 0 for s, e in parts),
+ np.int,
+ )
+ l_sum = np.sum(lens)
+ if l_sum == 0:
+ break
+ probs = lens / np.sum(lens)
+ c = np.random.choice(len(parts), p=probs)
+ s, e = parts.pop(c)
+ parts.extend(arrange(s, e, length, min_length))
+ mask_idc = np.asarray(mask_idc)
+ else:
+ min_len = min(lengths)
+ if sz - min_len <= num_mask:
+ min_len = sz - num_mask - 1
+
+ mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
+
+ mask_idc = np.asarray(
+ [
+ mask_idc[j] + offset
+ for j in range(len(mask_idc))
+ for offset in range(lengths[j])
+ ]
+ )
+
+ mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
+
+ min_len = min([len(m) for m in mask_idcs])
+ for i, mask_idc in enumerate(mask_idcs):
+ if len(mask_idc) > min_len:
+ mask_idc = np.random.choice(mask_idc, min_len, replace=False)
+ mask[i, mask_idc] = True
+
+ return mask
+
+
+class WavLMConfig:
+ def __init__(self, cfg=None):
+ self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)
+ self.encoder_layers: int = 12 # num encoder layers in the transformer
+
+ self.encoder_embed_dim: int = 768 # encoder embedding dimension
+ self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
+ self.encoder_attention_heads: int = 12 # num encoder attention heads
+ self.activation_fn: str = "gelu" # activation function to use
+
+ self.layer_norm_first: bool = False # apply layernorm first in the transformer
+ self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]
+ self.conv_bias: bool = False # include bias in conv encoder
+ self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this
+
+ self.normalize: bool = False # normalize input to have 0 mean and unit variance during training
+
+ # dropouts
+ self.dropout: float = 0.1 # dropout probability for the transformer
+ self.attention_dropout: float = 0.1 # dropout probability for attention weights
+ self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
+ self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
+ self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
+ self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr)
+
+ # masking
+ self.mask_length: int = 10 # mask length
+ self.mask_prob: float = 0.65 # probability of replacing a token with mask
+ self.mask_selection: str = "static" # how to choose mask length
+ self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh
+ self.no_mask_overlap: bool = False # whether to allow masks to overlap
+ self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled)
+
+ # channel masking
+ self.mask_channel_length: int = 10 # length of the mask for features (channels)
+ self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0
+ self.mask_channel_selection: str = "static" # how to choose mask length for channel masking
+ self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices
+ self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap
+ self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled)
+
+ # positional embeddings
+ self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
+ self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
+
+ # relative position embedding
+ self.relative_position_embedding: bool = False # apply relative position embedding
+ self.num_buckets: int = 320 # number of buckets for relative position embedding
+ self.max_distance: int = 1280 # maximum distance for relative position embedding
+ self.gru_rel_pos: bool = False # apply gated relative position embedding
+
+ if cfg is not None:
+ self.update(cfg)
+
+ def update(self, cfg: dict):
+ self.__dict__.update(cfg)
+
+
+class WavLM(nn.Module):
+ def __init__(
+ self,
+ cfg: WavLMConfig,
+ ) -> None:
+ super().__init__()
+ logger.info(f"WavLM Config: {cfg.__dict__}")
+
+ self.cfg = cfg
+ feature_enc_layers = eval(cfg.conv_feature_layers)
+ self.embed = feature_enc_layers[-1][0]
+
+ self.feature_extractor = ConvFeatureExtractionModel(
+ conv_layers=feature_enc_layers,
+ dropout=0.0,
+ mode=cfg.extractor_mode,
+ conv_bias=cfg.conv_bias,
+ )
+
+ self.post_extract_proj = (
+ nn.Linear(self.embed, cfg.encoder_embed_dim)
+ if self.embed != cfg.encoder_embed_dim
+ else None
+ )
+
+ self.mask_prob = cfg.mask_prob
+ self.mask_selection = cfg.mask_selection
+ self.mask_other = cfg.mask_other
+ self.mask_length = cfg.mask_length
+ self.no_mask_overlap = cfg.no_mask_overlap
+ self.mask_min_space = cfg.mask_min_space
+
+ self.mask_channel_prob = cfg.mask_channel_prob
+ self.mask_channel_selection = cfg.mask_channel_selection
+ self.mask_channel_other = cfg.mask_channel_other
+ self.mask_channel_length = cfg.mask_channel_length
+ self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
+ self.mask_channel_min_space = cfg.mask_channel_min_space
+
+ self.dropout_input = nn.Dropout(cfg.dropout_input)
+ self.dropout_features = nn.Dropout(cfg.dropout_features)
+
+ self.feature_grad_mult = cfg.feature_grad_mult
+
+ self.mask_emb = nn.Parameter(
+ torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
+ )
+
+ self.encoder = TransformerEncoder(cfg)
+ self.layer_norm = LayerNorm(self.embed)
+
+ def apply_mask(self, x, padding_mask):
+ B, T, C = x.shape
+ if self.mask_prob > 0:
+ mask_indices = compute_mask_indices(
+ (B, T),
+ padding_mask,
+ self.mask_prob,
+ self.mask_length,
+ self.mask_selection,
+ self.mask_other,
+ min_masks=2,
+ no_overlap=self.no_mask_overlap,
+ min_space=self.mask_min_space,
+ )
+ mask_indices = torch.from_numpy(mask_indices).to(x.device)
+ x[mask_indices] = self.mask_emb
+ else:
+ mask_indices = None
+
+ if self.mask_channel_prob > 0:
+ mask_channel_indices = compute_mask_indices(
+ (B, C),
+ None,
+ self.mask_channel_prob,
+ self.mask_channel_length,
+ self.mask_channel_selection,
+ self.mask_channel_other,
+ no_overlap=self.no_mask_channel_overlap,
+ min_space=self.mask_channel_min_space,
+ )
+ mask_channel_indices = (
+ torch.from_numpy(mask_channel_indices)
+ .to(x.device)
+ .unsqueeze(1)
+ .expand(-1, T, -1)
+ )
+ x[mask_channel_indices] = 0
+
+ return x, mask_indices
+
+ def forward_padding_mask(
+ self, features: torch.Tensor, padding_mask: torch.Tensor,
+ ) -> torch.Tensor:
+ extra = padding_mask.size(1) % features.size(1)
+ if extra > 0:
+ padding_mask = padding_mask[:, :-extra]
+ padding_mask = padding_mask.view(
+ padding_mask.size(0), features.size(1), -1
+ )
+ padding_mask = padding_mask.all(-1)
+ return padding_mask
+
+ def extract_features(
+ self,
+ source: torch.Tensor,
+ padding_mask: Optional[torch.Tensor] = None,
+ mask: bool = False,
+ ret_conv: bool = False,
+ output_layer: Optional[int] = None,
+ ret_layer_results: bool = False,
+ ):
+
+ if self.feature_grad_mult > 0:
+ features = self.feature_extractor(source)
+ if self.feature_grad_mult != 1.0:
+ features = GradMultiply.apply(features, self.feature_grad_mult)
+ else:
+ with torch.no_grad():
+ features = self.feature_extractor(source)
+
+ features = features.transpose(1, 2)
+ features = self.layer_norm(features)
+
+ if padding_mask is not None:
+ padding_mask = self.forward_padding_mask(features, padding_mask)
+
+ if self.post_extract_proj is not None:
+ features = self.post_extract_proj(features)
+
+ features = self.dropout_input(features)
+
+ if mask:
+ x, mask_indices = self.apply_mask(
+ features, padding_mask
+ )
+ else:
+ x = features
+
+ # feature: (B, T, D), float
+ # target: (B, T), long
+ # x: (B, T, D), float
+ # padding_mask: (B, T), bool
+ # mask_indices: (B, T), bool
+ x, layer_results = self.encoder(
+ x,
+ padding_mask=padding_mask,
+ layer=None if output_layer is None else output_layer - 1
+ )
+
+ res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
+
+ feature = res["features"] if ret_conv else res["x"]
+ if ret_layer_results:
+ feature = (feature, res["layer_results"])
+ return feature, res["padding_mask"]
+
+
+class ConvFeatureExtractionModel(nn.Module):
+ def __init__(
+ self,
+ conv_layers: List[Tuple[int, int, int]],
+ dropout: float = 0.0,
+ mode: str = "default",
+ conv_bias: bool = False,
+ conv_type: str = "default"
+ ):
+ super().__init__()
+
+ assert mode in {"default", "layer_norm"}
+
+ def block(
+ n_in,
+ n_out,
+ k,
+ stride,
+ is_layer_norm=False,
+ is_group_norm=False,
+ conv_bias=False,
+ ):
+ def make_conv():
+ conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
+ nn.init.kaiming_normal_(conv.weight)
+ return conv
+
+ assert (is_layer_norm and is_group_norm) is False, "layer norm and group norm are exclusive"
+
+ if is_layer_norm:
+ return nn.Sequential(
+ make_conv(),
+ nn.Dropout(p=dropout),
+ nn.Sequential(
+ TransposeLast(),
+ Fp32LayerNorm(dim, elementwise_affine=True),
+ TransposeLast(),
+ ),
+ nn.GELU(),
+ )
+ elif is_group_norm:
+ return nn.Sequential(
+ make_conv(),
+ nn.Dropout(p=dropout),
+ Fp32GroupNorm(dim, dim, affine=True),
+ nn.GELU(),
+ )
+ else:
+ return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
+
+ self.conv_type = conv_type
+ if self.conv_type == "default":
+ in_d = 1
+ self.conv_layers = nn.ModuleList()
+ for i, cl in enumerate(conv_layers):
+ assert len(cl) == 3, "invalid conv definition: " + str(cl)
+ (dim, k, stride) = cl
+
+ self.conv_layers.append(
+ block(
+ in_d,
+ dim,
+ k,
+ stride,
+ is_layer_norm=mode == "layer_norm",
+ is_group_norm=mode == "default" and i == 0,
+ conv_bias=conv_bias,
+ )
+ )
+ in_d = dim
+ elif self.conv_type == "conv2d":
+ in_d = 1
+ self.conv_layers = nn.ModuleList()
+ for i, cl in enumerate(conv_layers):
+ assert len(cl) == 3
+ (dim, k, stride) = cl
+
+ self.conv_layers.append(
+ torch.nn.Conv2d(in_d, dim, k, stride)
+ )
+ self.conv_layers.append(torch.nn.ReLU())
+ in_d = dim
+ elif self.conv_type == "custom":
+ in_d = 1
+ idim = 80
+ self.conv_layers = nn.ModuleList()
+ for i, cl in enumerate(conv_layers):
+ assert len(cl) == 3
+ (dim, k, stride) = cl
+ self.conv_layers.append(
+ torch.nn.Conv2d(in_d, dim, k, stride, padding=1)
+ )
+ self.conv_layers.append(
+ torch.nn.LayerNorm([dim, idim])
+ )
+ self.conv_layers.append(torch.nn.ReLU())
+ in_d = dim
+ if (i + 1) % 2 == 0:
+ self.conv_layers.append(
+ torch.nn.MaxPool2d(2, stride=2, ceil_mode=True)
+ )
+ idim = int(math.ceil(idim / 2))
+ else:
+ pass
+
+ def forward(self, x, mask=None):
+
+ # BxT -> BxCxT
+ x = x.unsqueeze(1)
+ if self.conv_type == "custom":
+ for conv in self.conv_layers:
+ if isinstance(conv, nn.LayerNorm):
+ x = x.transpose(1, 2)
+ x = conv(x).transpose(1, 2)
+ else:
+ x = conv(x)
+ x = x.transpose(2, 3).contiguous()
+ x = x.view(x.size(0), -1, x.size(-1))
+ else:
+ for conv in self.conv_layers:
+ x = conv(x)
+ if self.conv_type == "conv2d":
+ b, c, t, f = x.size()
+ x = x.transpose(2, 3).contiguous().view(b, c * f, t)
+ return x
+
+
+class TransformerEncoder(nn.Module):
+ def __init__(self, args):
+ super().__init__()
+
+ self.dropout = args.dropout
+ self.embedding_dim = args.encoder_embed_dim
+
+ self.pos_conv = nn.Conv1d(
+ self.embedding_dim,
+ self.embedding_dim,
+ kernel_size=args.conv_pos,
+ padding=args.conv_pos // 2,
+ groups=args.conv_pos_groups,
+ )
+ dropout = 0
+ std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
+ nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
+ nn.init.constant_(self.pos_conv.bias, 0)
+
+ self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
+ self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
+
+ if hasattr(args, "relative_position_embedding"):
+ self.relative_position_embedding = args.relative_position_embedding
+ self.num_buckets = args.num_buckets
+ self.max_distance = args.max_distance
+ else:
+ self.relative_position_embedding = False
+ self.num_buckets = 0
+ self.max_distance = 0
+
+ self.layers = nn.ModuleList(
+ [
+ TransformerSentenceEncoderLayer(
+ embedding_dim=self.embedding_dim,
+ ffn_embedding_dim=args.encoder_ffn_embed_dim,
+ num_attention_heads=args.encoder_attention_heads,
+ dropout=self.dropout,
+ attention_dropout=args.attention_dropout,
+ activation_dropout=args.activation_dropout,
+ activation_fn=args.activation_fn,
+ layer_norm_first=args.layer_norm_first,
+ has_relative_attention_bias=(self.relative_position_embedding and i == 0),
+ num_buckets=self.num_buckets,
+ max_distance=self.max_distance,
+ gru_rel_pos=args.gru_rel_pos,
+ )
+ for i in range(args.encoder_layers)
+ ]
+ )
+
+ self.layer_norm_first = args.layer_norm_first
+ self.layer_norm = LayerNorm(self.embedding_dim)
+ self.layerdrop = args.encoder_layerdrop
+
+ self.apply(init_bert_params)
+
+ def forward(self, x, padding_mask=None, streaming_mask=None, layer=None):
+ x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer)
+
+ if self.layer_norm_first and layer is None:
+ x = self.layer_norm(x)
+
+ return x, layer_results
+
+ def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None):
+
+ if padding_mask is not None:
+ x[padding_mask] = 0
+
+ x_conv = self.pos_conv(x.transpose(1, 2))
+ x_conv = x_conv.transpose(1, 2)
+ x = x + x_conv
+
+ if not self.layer_norm_first:
+ x = self.layer_norm(x)
+
+ x = F.dropout(x, p=self.dropout, training=self.training)
+
+ # B x T x C -> T x B x C
+ x = x.transpose(0, 1)
+
+ layer_results = []
+ z = None
+ if tgt_layer is not None:
+ layer_results.append((x, z))
+ r = None
+ pos_bias = None
+ for i, layer in enumerate(self.layers):
+ dropout_probability = np.random.random()
+ if not self.training or (dropout_probability > self.layerdrop):
+ x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False,
+ self_attn_mask=streaming_mask, pos_bias=pos_bias)
+ if tgt_layer is not None:
+ layer_results.append((x, z))
+ if i == tgt_layer:
+ r = x
+ break
+
+ if r is not None:
+ x = r
+
+ # T x B x C -> B x T x C
+ x = x.transpose(0, 1)
+
+ return x, layer_results
+
+
+class TransformerSentenceEncoderLayer(nn.Module):
+ """
+ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
+ models.
+ """
+
+ def __init__(
+ self,
+ embedding_dim: float = 768,
+ ffn_embedding_dim: float = 3072,
+ num_attention_heads: float = 8,
+ dropout: float = 0.1,
+ attention_dropout: float = 0.1,
+ activation_dropout: float = 0.1,
+ activation_fn: str = "relu",
+ layer_norm_first: bool = False,
+ has_relative_attention_bias: bool = False,
+ num_buckets: int = 0,
+ max_distance: int = 0,
+ rescale_init: bool = False,
+ gru_rel_pos: bool = False,
+ ) -> None:
+
+ super().__init__()
+ # Initialize parameters
+ self.embedding_dim = embedding_dim
+ self.dropout = dropout
+ self.activation_dropout = activation_dropout
+
+ # Initialize blocks
+ self.activation_name = activation_fn
+ self.activation_fn = get_activation_fn(activation_fn)
+ self.self_attn = MultiheadAttention(
+ self.embedding_dim,
+ num_attention_heads,
+ dropout=attention_dropout,
+ self_attention=True,
+ has_relative_attention_bias=has_relative_attention_bias,
+ num_buckets=num_buckets,
+ max_distance=max_distance,
+ rescale_init=rescale_init,
+ gru_rel_pos=gru_rel_pos,
+ )
+
+ self.dropout1 = nn.Dropout(dropout)
+ self.dropout2 = nn.Dropout(self.activation_dropout)
+ self.dropout3 = nn.Dropout(dropout)
+
+ self.layer_norm_first = layer_norm_first
+
+ # layer norm associated with the self attention layer
+ self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
+
+ if self.activation_name == "glu":
+ self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
+ else:
+ self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
+ self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
+
+ # layer norm associated with the position wise feed-forward NN
+ self.final_layer_norm = LayerNorm(self.embedding_dim)
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ self_attn_mask: torch.Tensor = None,
+ self_attn_padding_mask: torch.Tensor = None,
+ need_weights: bool = False,
+ pos_bias=None
+ ):
+ """
+ LayerNorm is applied either before or after the self-attention/ffn
+ modules similar to the original Transformer imlementation.
+ """
+ residual = x
+
+ if self.layer_norm_first:
+ x = self.self_attn_layer_norm(x)
+ x, attn, pos_bias = self.self_attn(
+ query=x,
+ key=x,
+ value=x,
+ key_padding_mask=self_attn_padding_mask,
+ need_weights=False,
+ attn_mask=self_attn_mask,
+ position_bias=pos_bias
+ )
+ x = self.dropout1(x)
+ x = residual + x
+
+ residual = x
+ x = self.final_layer_norm(x)
+ if self.activation_name == "glu":
+ x = self.fc1(x)
+ else:
+ x = self.activation_fn(self.fc1(x))
+ x = self.dropout2(x)
+ x = self.fc2(x)
+ x = self.dropout3(x)
+ x = residual + x
+ else:
+ x, attn, pos_bias = self.self_attn(
+ query=x,
+ key=x,
+ value=x,
+ key_padding_mask=self_attn_padding_mask,
+ need_weights=need_weights,
+ attn_mask=self_attn_mask,
+ position_bias=pos_bias
+ )
+
+ x = self.dropout1(x)
+ x = residual + x
+
+ x = self.self_attn_layer_norm(x)
+
+ residual = x
+ if self.activation_name == "glu":
+ x = self.fc1(x)
+ else:
+ x = self.activation_fn(self.fc1(x))
+ x = self.dropout2(x)
+ x = self.fc2(x)
+ x = self.dropout3(x)
+ x = residual + x
+ x = self.final_layer_norm(x)
+
+ return x, attn, pos_bias
+
diff --git a/vencoder/wavlm/modules.py b/vencoder/wavlm/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..add4a1aa0042cbcbf5c3b28d4d72f017b507717d
--- /dev/null
+++ b/vencoder/wavlm/modules.py
@@ -0,0 +1,828 @@
+# --------------------------------------------------------
+# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
+# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
+# Copyright (c) 2021 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Based on fairseq code bases
+# https://github.com/pytorch/fairseq
+# --------------------------------------------------------
+
+import math
+import warnings
+from typing import Dict, Optional, Tuple
+
+import torch
+import torch.nn.functional as F
+from torch import Tensor, nn
+from torch.nn import Parameter
+
+
+class TransposeLast(nn.Module):
+ def __init__(self, deconstruct_idx=None):
+ super().__init__()
+ self.deconstruct_idx = deconstruct_idx
+
+ def forward(self, x):
+ if self.deconstruct_idx is not None:
+ x = x[self.deconstruct_idx]
+ return x.transpose(-2, -1)
+
+
+class Fp32LayerNorm(nn.LayerNorm):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ def forward(self, input):
+ output = F.layer_norm(
+ input.float(),
+ self.normalized_shape,
+ self.weight.float() if self.weight is not None else None,
+ self.bias.float() if self.bias is not None else None,
+ self.eps,
+ )
+ return output.type_as(input)
+
+
+class Fp32GroupNorm(nn.GroupNorm):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ def forward(self, input):
+ output = F.group_norm(
+ input.float(),
+ self.num_groups,
+ self.weight.float() if self.weight is not None else None,
+ self.bias.float() if self.bias is not None else None,
+ self.eps,
+ )
+ return output.type_as(input)
+
+
+class GradMultiply(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x, scale):
+ ctx.scale = scale
+ res = x.new(x)
+ return res
+
+ @staticmethod
+ def backward(ctx, grad):
+ return grad * ctx.scale, None
+
+
+class SamePad(nn.Module):
+ def __init__(self, kernel_size, causal=False):
+ super().__init__()
+ if causal:
+ self.remove = kernel_size - 1
+ else:
+ self.remove = 1 if kernel_size % 2 == 0 else 0
+
+ def forward(self, x):
+ if self.remove > 0:
+ x = x[:, :, : -self.remove]
+ return x
+
+
+class Swish(nn.Module):
+ """Swish function
+ """
+
+ def __init__(self):
+ """Construct an MultiHeadedAttention object."""
+ super(Swish, self).__init__()
+ self.act = torch.nn.Sigmoid()
+
+ def forward(self, x):
+ return x * self.act(x)
+
+
+class GLU_Linear(nn.Module):
+ def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True):
+ super(GLU_Linear, self).__init__()
+
+ self.glu_type = glu_type
+ self.output_dim = output_dim
+
+ if glu_type == "sigmoid":
+ self.glu_act = torch.nn.Sigmoid()
+ elif glu_type == "swish":
+ self.glu_act = Swish()
+ elif glu_type == "relu":
+ self.glu_act = torch.nn.ReLU()
+ elif glu_type == "gelu":
+ self.glu_act = torch.nn.GELU()
+
+ if bias_in_glu:
+ self.linear = nn.Linear(input_dim, output_dim * 2, True)
+ else:
+ self.linear = nn.Linear(input_dim, output_dim * 2, False)
+
+ def forward(self, x):
+ # to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
+ x = self.linear(x)
+
+ if self.glu_type == "bilinear":
+ x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2])
+ else:
+ x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2]))
+
+ return x
+
+
+def gelu_accurate(x):
+ if not hasattr(gelu_accurate, "_a"):
+ gelu_accurate._a = math.sqrt(2 / math.pi)
+ return (
+ 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
+ )
+
+
+def gelu(x: torch.Tensor) -> torch.Tensor:
+ return torch.nn.functional.gelu(x.float()).type_as(x)
+
+
+def get_activation_fn(activation: str):
+ """Returns the activation function corresponding to `activation`"""
+
+ if activation == "relu":
+ return F.relu
+ elif activation == "gelu":
+ return gelu
+ elif activation == "gelu_fast":
+ warnings.warn(
+ "--activation-fn=gelu_fast has been renamed to gelu_accurate"
+ )
+ return gelu_accurate
+ elif activation == "gelu_accurate":
+ return gelu_accurate
+ elif activation == "tanh":
+ return torch.tanh
+ elif activation == "linear":
+ return lambda x: x
+ elif activation == "glu":
+ return lambda x: x
+ else:
+ raise RuntimeError("--activation-fn {} not supported".format(activation))
+
+
+def init_bert_params(module):
+ """
+ Initialize the weights specific to the BERT Model.
+ This overrides the default initializations depending on the specified arguments.
+ 1. If normal_init_linear_weights is set then weights of linear
+ layer will be initialized using the normal distribution and
+ bais will be set to the specified value.
+ 2. If normal_init_embed_weights is set then weights of embedding
+ layer will be initialized using the normal distribution.
+ 3. If normal_init_proj_weights is set then weights of
+ in_project_weight for MultiHeadAttention initialized using
+ the normal distribution (to be validated).
+ """
+
+ def normal_(data):
+ # with FSDP, module params will be on CUDA, so we cast them back to CPU
+ # so that the RNG is consistent with and without FSDP
+ data.copy_(
+ data.cpu().normal_(mean=0.0, std=0.02).to(data.device)
+ )
+
+ if isinstance(module, nn.Linear):
+ normal_(module.weight.data)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ if isinstance(module, nn.Embedding):
+ normal_(module.weight.data)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ if isinstance(module, MultiheadAttention):
+ normal_(module.q_proj.weight.data)
+ normal_(module.k_proj.weight.data)
+ normal_(module.v_proj.weight.data)
+
+
+def quant_noise(module, p, block_size):
+ """
+ Wraps modules and applies quantization noise to the weights for
+ subsequent quantization with Iterative Product Quantization as
+ described in "Training with Quantization Noise for Extreme Model Compression"
+
+ Args:
+ - module: nn.Module
+ - p: amount of Quantization Noise
+ - block_size: size of the blocks for subsequent quantization with iPQ
+
+ Remarks:
+ - Module weights must have the right sizes wrt the block size
+ - Only Linear, Embedding and Conv2d modules are supported for the moment
+ - For more detail on how to quantize by blocks with convolutional weights,
+ see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
+ - We implement the simplest form of noise here as stated in the paper
+ which consists in randomly dropping blocks
+ """
+
+ # if no quantization noise, don't register hook
+ if p <= 0:
+ return module
+
+ # supported modules
+ assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
+
+ # test whether module.weight has the right sizes wrt block_size
+ is_conv = module.weight.ndim == 4
+
+ # 2D matrix
+ if not is_conv:
+ assert (
+ module.weight.size(1) % block_size == 0
+ ), "Input features must be a multiple of block sizes"
+
+ # 4D matrix
+ else:
+ # 1x1 convolutions
+ if module.kernel_size == (1, 1):
+ assert (
+ module.in_channels % block_size == 0
+ ), "Input channels must be a multiple of block sizes"
+ # regular convolutions
+ else:
+ k = module.kernel_size[0] * module.kernel_size[1]
+ assert k % block_size == 0, "Kernel size must be a multiple of block size"
+
+ def _forward_pre_hook(mod, input):
+ # no noise for evaluation
+ if mod.training:
+ if not is_conv:
+ # gather weight and sizes
+ weight = mod.weight
+ in_features = weight.size(1)
+ out_features = weight.size(0)
+
+ # split weight matrix into blocks and randomly drop selected blocks
+ mask = torch.zeros(
+ in_features // block_size * out_features, device=weight.device
+ )
+ mask.bernoulli_(p)
+ mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
+
+ else:
+ # gather weight and sizes
+ weight = mod.weight
+ in_channels = mod.in_channels
+ out_channels = mod.out_channels
+
+ # split weight matrix into blocks and randomly drop selected blocks
+ if mod.kernel_size == (1, 1):
+ mask = torch.zeros(
+ int(in_channels // block_size * out_channels),
+ device=weight.device,
+ )
+ mask.bernoulli_(p)
+ mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
+ else:
+ mask = torch.zeros(
+ weight.size(0), weight.size(1), device=weight.device
+ )
+ mask.bernoulli_(p)
+ mask = (
+ mask.unsqueeze(2)
+ .unsqueeze(3)
+ .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
+ )
+
+ # scale weights and apply mask
+ mask = mask.to(
+ torch.bool
+ ) # x.bool() is not currently supported in TorchScript
+ s = 1 / (1 - p)
+ mod.weight.data = s * weight.masked_fill(mask, 0)
+
+ module.register_forward_pre_hook(_forward_pre_hook)
+ return module
+
+
+class MultiheadAttention(nn.Module):
+ """Multi-headed attention.
+
+ See "Attention Is All You Need" for more details.
+ """
+
+ def __init__(
+ self,
+ embed_dim,
+ num_heads,
+ kdim=None,
+ vdim=None,
+ dropout=0.0,
+ bias=True,
+ add_bias_kv=False,
+ add_zero_attn=False,
+ self_attention=False,
+ encoder_decoder_attention=False,
+ q_noise=0.0,
+ qn_block_size=8,
+ has_relative_attention_bias=False,
+ num_buckets=32,
+ max_distance=128,
+ gru_rel_pos=False,
+ rescale_init=False,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.kdim = kdim if kdim is not None else embed_dim
+ self.vdim = vdim if vdim is not None else embed_dim
+ self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
+
+ self.num_heads = num_heads
+ self.dropout_module = nn.Dropout(dropout)
+
+ self.has_relative_attention_bias = has_relative_attention_bias
+ self.num_buckets = num_buckets
+ self.max_distance = max_distance
+ if self.has_relative_attention_bias:
+ self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
+
+ self.head_dim = embed_dim // num_heads
+ self.q_head_dim = self.head_dim
+ self.k_head_dim = self.head_dim
+ assert (
+ self.head_dim * num_heads == self.embed_dim
+ ), "embed_dim must be divisible by num_heads"
+ self.scaling = self.head_dim ** -0.5
+
+ self.self_attention = self_attention
+ self.encoder_decoder_attention = encoder_decoder_attention
+
+ assert not self.self_attention or self.qkv_same_dim, (
+ "Self-attention requires query, key and " "value to be of the same size"
+ )
+
+ k_bias = True
+ if rescale_init:
+ k_bias = False
+
+ k_embed_dim = embed_dim
+ q_embed_dim = embed_dim
+
+ self.k_proj = quant_noise(
+ nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size
+ )
+ self.v_proj = quant_noise(
+ nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
+ )
+ self.q_proj = quant_noise(
+ nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size
+ )
+
+ self.out_proj = quant_noise(
+ nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
+ )
+
+ if add_bias_kv:
+ self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
+ self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
+ else:
+ self.bias_k = self.bias_v = None
+
+ self.add_zero_attn = add_zero_attn
+
+ self.gru_rel_pos = gru_rel_pos
+ if self.gru_rel_pos:
+ self.grep_linear = nn.Linear(self.q_head_dim, 8)
+ self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1))
+
+ self.reset_parameters()
+
+ def reset_parameters(self):
+ if self.qkv_same_dim:
+ # Empirically observed the convergence to be much better with
+ # the scaled initialization
+ nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
+ nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
+ nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
+ else:
+ nn.init.xavier_uniform_(self.k_proj.weight)
+ nn.init.xavier_uniform_(self.v_proj.weight)
+ nn.init.xavier_uniform_(self.q_proj.weight)
+
+ nn.init.xavier_uniform_(self.out_proj.weight)
+ if self.out_proj.bias is not None:
+ nn.init.constant_(self.out_proj.bias, 0.0)
+ if self.bias_k is not None:
+ nn.init.xavier_normal_(self.bias_k)
+ if self.bias_v is not None:
+ nn.init.xavier_normal_(self.bias_v)
+ if self.has_relative_attention_bias:
+ nn.init.xavier_normal_(self.relative_attention_bias.weight)
+
+ def _relative_positions_bucket(self, relative_positions, bidirectional=True):
+ num_buckets = self.num_buckets
+ max_distance = self.max_distance
+ relative_buckets = 0
+
+ if bidirectional:
+ num_buckets = num_buckets // 2
+ relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets
+ relative_positions = torch.abs(relative_positions)
+ else:
+ relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions))
+
+ max_exact = num_buckets // 2
+ is_small = relative_positions < max_exact
+
+ relative_postion_if_large = max_exact + (
+ torch.log(relative_positions.float() / max_exact)
+ / math.log(max_distance / max_exact)
+ * (num_buckets - max_exact)
+ ).to(torch.long)
+ relative_postion_if_large = torch.min(
+ relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
+ )
+
+ relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large)
+ return relative_buckets
+
+ def compute_bias(self, query_length, key_length):
+ context_position = torch.arange(query_length, dtype=torch.long)[:, None]
+ memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
+ relative_position = memory_position - context_position
+ relative_position_bucket = self._relative_positions_bucket(
+ relative_position,
+ bidirectional=True
+ )
+ relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
+ values = self.relative_attention_bias(relative_position_bucket)
+ values = values.permute([2, 0, 1])
+ return values
+
+ def forward(
+ self,
+ query,
+ key: Optional[Tensor],
+ value: Optional[Tensor],
+ key_padding_mask: Optional[Tensor] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ need_weights: bool = True,
+ static_kv: bool = False,
+ attn_mask: Optional[Tensor] = None,
+ before_softmax: bool = False,
+ need_head_weights: bool = False,
+ position_bias: Optional[Tensor] = None
+ ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
+ """Input shape: Time x Batch x Channel
+
+ Args:
+ key_padding_mask (ByteTensor, optional): mask to exclude
+ keys that are pads, of shape `(batch, src_len)`, where
+ padding elements are indicated by 1s.
+ need_weights (bool, optional): return the attention weights,
+ averaged over heads (default: False).
+ attn_mask (ByteTensor, optional): typically used to
+ implement causal attention, where the mask prevents the
+ attention from looking forward in time (default: None).
+ before_softmax (bool, optional): return the raw attention
+ weights and values before the attention softmax.
+ need_head_weights (bool, optional): return the attention
+ weights for each head. Implies *need_weights*. Default:
+ return the average attention weights over all heads.
+ """
+ if need_head_weights:
+ need_weights = True
+
+ is_tpu = query.device.type == "xla"
+
+ tgt_len, bsz, embed_dim = query.size()
+ src_len = tgt_len
+ assert embed_dim == self.embed_dim
+ assert list(query.size()) == [tgt_len, bsz, embed_dim]
+ if key is not None:
+ src_len, key_bsz, _ = key.size()
+ if not torch.jit.is_scripting():
+ assert key_bsz == bsz
+ assert value is not None
+ assert src_len, bsz == value.shape[:2]
+
+ if self.has_relative_attention_bias and position_bias is None:
+ position_bias = self.compute_bias(tgt_len, src_len)
+ position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len)
+
+ if (
+ not is_tpu # don't use PyTorch version on TPUs
+ and incremental_state is None
+ and not static_kv
+ # A workaround for quantization to work. Otherwise JIT compilation
+ # treats bias in linear module as method.
+ and not torch.jit.is_scripting()
+ and self.q_head_dim == self.head_dim
+ ):
+ assert key is not None and value is not None
+ assert attn_mask is None
+
+ attn_mask_rel_pos = None
+ if position_bias is not None:
+ attn_mask_rel_pos = position_bias
+ if self.gru_rel_pos:
+ query_layer = query.transpose(0, 1)
+ new_x_shape = query_layer.size()[:-1] + (self.num_heads, -1)
+ query_layer = query_layer.view(*new_x_shape)
+ query_layer = query_layer.permute(0, 2, 1, 3)
+ _B, _H, _L, __ = query_layer.size()
+
+ gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
+ _B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
+ gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
+ attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias
+
+ attn_mask_rel_pos = attn_mask_rel_pos.view((-1, tgt_len, tgt_len))
+ k_proj_bias = self.k_proj.bias
+ if k_proj_bias is None:
+ k_proj_bias = torch.zeros_like(self.q_proj.bias)
+
+ x, attn = F.multi_head_attention_forward(
+ query,
+ key,
+ value,
+ self.embed_dim,
+ self.num_heads,
+ torch.empty([0]),
+ torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
+ self.bias_k,
+ self.bias_v,
+ self.add_zero_attn,
+ self.dropout_module.p,
+ self.out_proj.weight,
+ self.out_proj.bias,
+ self.training,
+ # self.training or self.dropout_module.apply_during_inference,
+ key_padding_mask,
+ need_weights,
+ attn_mask_rel_pos,
+ use_separate_proj_weight=True,
+ q_proj_weight=self.q_proj.weight,
+ k_proj_weight=self.k_proj.weight,
+ v_proj_weight=self.v_proj.weight,
+ )
+ return x, attn, position_bias
+
+ if incremental_state is not None:
+ saved_state = self._get_input_buffer(incremental_state)
+ if saved_state is not None and "prev_key" in saved_state:
+ # previous time steps are cached - no need to recompute
+ # key and value if they are static
+ if static_kv:
+ assert self.encoder_decoder_attention and not self.self_attention
+ key = value = None
+ else:
+ saved_state = None
+
+ if self.self_attention:
+ q = self.q_proj(query)
+ k = self.k_proj(query)
+ v = self.v_proj(query)
+ elif self.encoder_decoder_attention:
+ # encoder-decoder attention
+ q = self.q_proj(query)
+ if key is None:
+ assert value is None
+ k = v = None
+ else:
+ k = self.k_proj(key)
+ v = self.v_proj(key)
+
+ else:
+ assert key is not None and value is not None
+ q = self.q_proj(query)
+ k = self.k_proj(key)
+ v = self.v_proj(value)
+ q *= self.scaling
+
+ if self.bias_k is not None:
+ assert self.bias_v is not None
+ k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
+ v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
+ if attn_mask is not None:
+ attn_mask = torch.cat(
+ [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
+ )
+ if key_padding_mask is not None:
+ key_padding_mask = torch.cat(
+ [
+ key_padding_mask,
+ key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
+ ],
+ dim=1,
+ )
+
+ q = (
+ q.contiguous()
+ .view(tgt_len, bsz * self.num_heads, self.q_head_dim)
+ .transpose(0, 1)
+ )
+ if k is not None:
+ k = (
+ k.contiguous()
+ .view(-1, bsz * self.num_heads, self.k_head_dim)
+ .transpose(0, 1)
+ )
+ if v is not None:
+ v = (
+ v.contiguous()
+ .view(-1, bsz * self.num_heads, self.head_dim)
+ .transpose(0, 1)
+ )
+
+ if saved_state is not None:
+ # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
+ if "prev_key" in saved_state:
+ _prev_key = saved_state["prev_key"]
+ assert _prev_key is not None
+ prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
+ if static_kv:
+ k = prev_key
+ else:
+ assert k is not None
+ k = torch.cat([prev_key, k], dim=1)
+ src_len = k.size(1)
+ if "prev_value" in saved_state:
+ _prev_value = saved_state["prev_value"]
+ assert _prev_value is not None
+ prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
+ if static_kv:
+ v = prev_value
+ else:
+ assert v is not None
+ v = torch.cat([prev_value, v], dim=1)
+ prev_key_padding_mask: Optional[Tensor] = None
+ if "prev_key_padding_mask" in saved_state:
+ prev_key_padding_mask = saved_state["prev_key_padding_mask"]
+ assert k is not None and v is not None
+ key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
+ key_padding_mask=key_padding_mask,
+ prev_key_padding_mask=prev_key_padding_mask,
+ batch_size=bsz,
+ src_len=k.size(1),
+ static_kv=static_kv,
+ )
+
+ saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
+ saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
+ saved_state["prev_key_padding_mask"] = key_padding_mask
+ # In this branch incremental_state is never None
+ assert incremental_state is not None
+ incremental_state = self._set_input_buffer(incremental_state, saved_state)
+ assert k is not None
+ assert k.size(1) == src_len
+
+ # This is part of a workaround to get around fork/join parallelism
+ # not supporting Optional types.
+ if key_padding_mask is not None and key_padding_mask.dim() == 0:
+ key_padding_mask = None
+
+ if key_padding_mask is not None:
+ assert key_padding_mask.size(0) == bsz
+ assert key_padding_mask.size(1) == src_len
+
+ if self.add_zero_attn:
+ assert v is not None
+ src_len += 1
+ k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
+ v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
+ if attn_mask is not None:
+ attn_mask = torch.cat(
+ [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
+ )
+ if key_padding_mask is not None:
+ key_padding_mask = torch.cat(
+ [
+ key_padding_mask,
+ torch.zeros(key_padding_mask.size(0), 1).type_as(
+ key_padding_mask
+ ),
+ ],
+ dim=1,
+ )
+
+ attn_weights = torch.bmm(q, k.transpose(1, 2))
+ attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
+
+ assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
+
+ if attn_mask is not None:
+ attn_mask = attn_mask.unsqueeze(0)
+ attn_weights += attn_mask
+
+ if key_padding_mask is not None:
+ # don't attend to padding symbols
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ if not is_tpu:
+ attn_weights = attn_weights.masked_fill(
+ key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
+ float("-inf"),
+ )
+ else:
+ attn_weights = attn_weights.transpose(0, 2)
+ attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
+ attn_weights = attn_weights.transpose(0, 2)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if before_softmax:
+ return attn_weights, v, position_bias
+
+ if position_bias is not None:
+ if self.gru_rel_pos == 1:
+ query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim)
+ _B, _H, _L, __ = query_layer.size()
+ gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
+ _B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
+ gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
+ position_bias = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias
+
+ position_bias = position_bias.view(attn_weights.size())
+
+ attn_weights = attn_weights + position_bias
+
+ attn_weights_float = F.softmax(
+ attn_weights, dim=-1
+ )
+ attn_weights = attn_weights_float.type_as(attn_weights)
+ attn_probs = self.dropout_module(attn_weights)
+
+ assert v is not None
+ attn = torch.bmm(attn_probs, v)
+ assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
+ attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
+ attn = self.out_proj(attn)
+ attn_weights: Optional[Tensor] = None
+ if need_weights:
+ attn_weights = attn_weights_float.view(
+ bsz, self.num_heads, tgt_len, src_len
+ ).transpose(1, 0)
+ if not need_head_weights:
+ # average attention weights over heads
+ attn_weights = attn_weights.mean(dim=0)
+
+ return attn, attn_weights, position_bias
+
+ @staticmethod
+ def _append_prev_key_padding_mask(
+ key_padding_mask: Optional[Tensor],
+ prev_key_padding_mask: Optional[Tensor],
+ batch_size: int,
+ src_len: int,
+ static_kv: bool,
+ ) -> Optional[Tensor]:
+ # saved key padding masks have shape (bsz, seq_len)
+ if prev_key_padding_mask is not None and static_kv:
+ new_key_padding_mask = prev_key_padding_mask
+ elif prev_key_padding_mask is not None and key_padding_mask is not None:
+ new_key_padding_mask = torch.cat(
+ [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
+ )
+ # During incremental decoding, as the padding token enters and
+ # leaves the frame, there will be a time when prev or current
+ # is None
+ elif prev_key_padding_mask is not None:
+ if src_len > prev_key_padding_mask.size(1):
+ filler = torch.zeros(
+ (batch_size, src_len - prev_key_padding_mask.size(1)),
+ device=prev_key_padding_mask.device,
+ )
+ new_key_padding_mask = torch.cat(
+ [prev_key_padding_mask.float(), filler.float()], dim=1
+ )
+ else:
+ new_key_padding_mask = prev_key_padding_mask.float()
+ elif key_padding_mask is not None:
+ if src_len > key_padding_mask.size(1):
+ filler = torch.zeros(
+ (batch_size, src_len - key_padding_mask.size(1)),
+ device=key_padding_mask.device,
+ )
+ new_key_padding_mask = torch.cat(
+ [filler.float(), key_padding_mask.float()], dim=1
+ )
+ else:
+ new_key_padding_mask = key_padding_mask.float()
+ else:
+ new_key_padding_mask = prev_key_padding_mask
+ return new_key_padding_mask
+
+ def _get_input_buffer(
+ self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
+ ) -> Dict[str, Optional[Tensor]]:
+ result = self.get_incremental_state(incremental_state, "attn_state")
+ if result is not None:
+ return result
+ else:
+ empty_result: Dict[str, Optional[Tensor]] = {}
+ return empty_result
+
+ def _set_input_buffer(
+ self,
+ incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
+ buffer: Dict[str, Optional[Tensor]],
+ ):
+ return self.set_incremental_state(incremental_state, "attn_state", buffer)
+
+ def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
+ return attn_weights
diff --git a/vencoder/whisper/audio.py b/vencoder/whisper/audio.py
index 3bdb70ba9357e95ff05853dcc06437c3401ef3be..05890dc195a376181c21072eb0a8af24cf29928a 100644
--- a/vencoder/whisper/audio.py
+++ b/vencoder/whisper/audio.py
@@ -1,4 +1,3 @@
-import os
from functools import lru_cache
from typing import Union
@@ -6,11 +5,10 @@ import ffmpeg
import numpy as np
import torch
import torch.nn.functional as F
+from librosa.filters import mel as librosa_mel_fn
from .utils import exact_div
-from librosa.filters import mel as librosa_mel_fn
-
# hard-coded audio hyperparameters
SAMPLE_RATE = 16000
N_FFT = 400
diff --git a/vencoder/whisper/decoding.py b/vencoder/whisper/decoding.py
index 603546d4c9ff67514d2567576935b974fe373bef..45e50b1c33c2c8f9ca6572e6175b8d6051ae02ee 100644
--- a/vencoder/whisper/decoding.py
+++ b/vencoder/whisper/decoding.py
@@ -1,5 +1,5 @@
from dataclasses import dataclass, field
-from typing import Dict, List, Tuple, Iterable, Optional, Sequence, Union, TYPE_CHECKING
+from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
@@ -32,7 +32,7 @@ def detect_language(model: "Whisper", mel: Tensor, tokenizer: Tokenizer = None)
if tokenizer is None:
tokenizer = get_tokenizer(model.is_multilingual)
if tokenizer.language is None or tokenizer.language_token not in tokenizer.sot_sequence:
- raise ValueError(f"This model doesn't have language tokens so it can't perform lang id")
+ raise ValueError("This model doesn't have language tokens so it can't perform lang id")
single = mel.ndim == 2
if single:
diff --git a/vencoder/whisper/model.py b/vencoder/whisper/model.py
index cb3781c17a1e78a33bf62246e5134e8512206d0d..f3de4d32cb9646964074401aad176dbef9ef2125 100644
--- a/vencoder/whisper/model.py
+++ b/vencoder/whisper/model.py
@@ -1,14 +1,13 @@
from dataclasses import dataclass
-from typing import Dict
-from typing import Iterable, Optional
+from typing import Dict, Iterable, Optional
import numpy as np
import torch
import torch.nn.functional as F
-from torch import Tensor
-from torch import nn
+from torch import Tensor, nn
-from .decoding import detect_language as detect_language_function, decode as decode_function
+from .decoding import decode as decode_function
+from .decoding import detect_language as detect_language_function
@dataclass
diff --git a/vencoder/whisper/tokenizer.py b/vencoder/whisper/tokenizer.py
index a27cb359ee891590d3f793624f9f8ec768a26cc3..b15645dc7e15ca9f601413076299b362293eae6d 100644
--- a/vencoder/whisper/tokenizer.py
+++ b/vencoder/whisper/tokenizer.py
@@ -196,7 +196,7 @@ class Tokenizer:
def language_token(self) -> int:
"""Returns the token id corresponding to the value of the `language` field"""
if self.language is None:
- raise ValueError(f"This tokenizer does not have language token configured")
+ raise ValueError("This tokenizer does not have language token configured")
additional_tokens = dict(
zip(