Guhanselvam commited on
Commit
b272e20
·
verified ·
1 Parent(s): e7102c8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -63
app.py CHANGED
@@ -1,75 +1,42 @@
1
- import torch
2
- from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
3
- import sounddevice as sd
4
- import soundfile as sf
5
  import numpy as np
6
- import requests
7
- import webbrowser
8
- import os
 
 
 
9
 
10
- # Load pre-trained Wav2Vec2 model and tokenizer
11
- model_name = "facebook/wav2vec2-large-xlsr-53" # Model name for audio processing
12
  tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
13
  model = Wav2Vec2ForCTC.from_pretrained(model_name)
14
 
15
- # Function to record audio
16
- def record_audio(duration=5, fs=16000):
17
- print("Recording...")
18
- audio = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='float32')
19
- sd.wait() # Wait until recording is finished
20
- print("Recording finished.")
21
- return audio.flatten()
22
 
23
- # Function for emotion recognition
24
- def recognize_emotion(audio):
25
- # Normalize audio if necessary (check your audio data properties if required)
26
- input_values = tokenizer(audio, return_tensors='pt', padding='longest', sampling_rate=16000).input_values
27
 
28
- # Get the logits (raw predictions) and apply softmax to get probabilities
29
- with torch.no_grad():
30
- logits = model(input_values).logits
31
- predicted_ids = torch.argmax(logits, dim=-1)
 
 
32
 
33
- # Decode the predicted IDs to text
34
- transcription = tokenizer.decode(predicted_ids[0])
35
-
36
- return transcription # Return the detected text
37
-
38
- # Function to get Spotify playlist based on mood
39
- def get_playlist(mood):
40
- url = "https://unsa-unofficial-spotify-api.p.rapidapi.com/search"
41
- querystring = {"query": mood, "count": "10", "type": "playlists"}
42
- headers = {
43
- 'x-rapidapi-key': "your-api-key", # Replace with your actual API key
44
- 'x-rapidapi-host': "unsa-unofficial-spotify-api.p.rapidapi.com"
45
- }
46
-
47
- try:
48
- response = requests.get(url, headers=headers, params=querystring)
49
- response.raise_for_status() # Raises error for bad responses
50
- playlist_id = response.json()["Results"][0]["id"] # Get the first playlist
51
- return playlist_id
52
- except requests.exceptions.RequestException as e:
53
- print(f"Error fetching playlist data: {e}")
54
- return None
55
-
56
- # Function to open the Spotify playlist in a web browser
57
- def open_playlist(playlist_id):
58
- webbrowser.open(f'https://open.spotify.com/playlist/{playlist_id}')
59
-
60
- # Main function to record audio and recognize mood
61
- def main():
62
- # Record audio
63
- audio = record_audio()
64
 
65
- # Recognize the mood/emotion from audio
66
- emotion_text = recognize_emotion(audio)
67
- print(f"Detected Emotion: {emotion_text}")
68
 
69
- # Get Spotify playlist based on the detected emotion
70
- playlist_id = get_playlist(emotion_text)
71
- if playlist_id:
72
- open_playlist(playlist_id)
73
 
 
74
  if __name__ == "__main__":
75
- main()
 
 
 
 
 
 
 
1
  import numpy as np
2
+ import soundfile as sf
3
+ import librosa
4
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
5
+ import torch
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.ensemble import RandomForestClassifier
8
 
9
+ # Load Hugging Face's Wav2Vec2 model and tokenizer
10
+ model_name = "facebook/wav2vec2-large-xlsr-53"
11
  tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
12
  model = Wav2Vec2ForCTC.from_pretrained(model_name)
13
 
14
+ def load_audio(file_path):
15
+ audio, sample_rate = sf.read(file_path)
16
+ return audio
 
 
 
 
17
 
18
+ def extract_mfcc_features(audio, sample_rate):
19
+ mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)
20
+ mfccs_scaled = np.mean(mfccs.T, axis=0)
21
+ return mfccs_scaled
22
 
23
+ def predict_emotion(file_path):
24
+ audio = load_audio(file_path)
25
+ mfcc_features = extract_mfcc_features(audio, 16000) # Adjust sample rate if needed
26
+
27
+ # Prepare for prediction (just using random sample for this dummy)
28
+ encoded_input = tokenizer(audio, sampling_rate=16000, return_tensors="pt", padding=True)
29
 
30
+ # Make sure to use the correct model input and outputs for emotion prediction
31
+ with torch.no_grad():
32
+ logits = model(**encoded_input).logits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ predicted_ids = torch.argmax(logits, dim=-1)
 
 
35
 
36
+ return tokenizer.decode(predicted_ids[0])
 
 
 
37
 
38
+ # Example usage of the model
39
  if __name__ == "__main__":
40
+ file_name = "path_to_your_audio_file.wav" # Replace with your audio file path
41
+ emotion = predict_emotion(file_name)
42
+ print(f'Predicted Emotion: {emotion}')