File size: 11,375 Bytes
2d47d90
 
 
 
 
 
 
 
 
 
 
b03a8f2
 
 
 
 
 
 
 
 
2d47d90
b03a8f2
 
 
 
2d47d90
b03a8f2
 
 
2d47d90
b03a8f2
 
2d47d90
b03a8f2
 
 
 
 
2d47d90
b03a8f2
 
 
 
 
 
 
2d47d90
b03a8f2
2d47d90
 
b03a8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d47d90
 
b03a8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d47d90
b03a8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d47d90
 
b03a8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d47d90
 
b03a8f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import spaces
import os
# os.system("Xvfb :99 -ac &")
# os.environ["DISPLAY"] = ":99"
import OpenGL.GL as gl
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
import gradio as gr
import torch
import numpy as np
import soundfile as sf
import librosa
from torchvision.io import write_video
from emage_utils.motion_io import beat_format_save
from emage_utils import fast_render
from emage_utils.npz2pose import render2d
from models.camn_audio import CamnAudioModel
from models.disco_audio import DiscoAudioModel
from models.emage_audio import EmageAudioModel, EmageVQVAEConv, EmageVAEConv, EmageVQModel
import torch.nn.functional as F

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
save_folder = "./gradio_results"
os.makedirs(save_folder, exist_ok=True)
print(device)

if not os.path.exists("./emage_evaltools/smplx_models"):
    import subprocess
    subprocess.run(["git", "clone", "https://huggingface.co/H-Liu1997/emage_evaltools"])

model_camn = CamnAudioModel.from_pretrained("H-Liu1997/camn_audio").to(device).eval()
model_disco = DiscoAudioModel.from_pretrained("H-Liu1997/disco_audio").to(device).eval()

face_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/face").to(device).eval()
upper_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/upper").to(device).eval()
lower_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/lower").to(device).eval()
hands_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/hands").to(device).eval()
global_motion_ae = EmageVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/global").to(device).eval()

emage_vq_model = EmageVQModel(
    face_model=face_motion_vq, 
    upper_model=upper_motion_vq,
    lower_model=lower_motion_vq, 
    hands_model=hands_motion_vq,
    global_model=global_motion_ae
).to(device).eval()

model_emage = EmageAudioModel.from_pretrained("H-Liu1997/emage_audio").to(device).eval()


def inference_camn(audio_path, sr_model, pose_fps, seed_frames):
    audio_loaded, _ = librosa.load(audio_path, sr=sr_model)
    audio_t = torch.from_numpy(audio_loaded).float().unsqueeze(0).to(device)
    sid = torch.zeros(1, 1).long().to(device)
    with torch.no_grad():
        motion_pred = model_camn(audio_t, sid, seed_frames=seed_frames)["motion_axis_angle"]
    t = motion_pred.shape[1]
    motion_pred = motion_pred.cpu().numpy().reshape(t, -1)
    npz_path = os.path.join(save_folder, "camn_output.npz")
    beat_format_save(npz_path, motion_pred, upsample=30 // pose_fps)
    return npz_path

def inference_disco(audio_path, sr_model, pose_fps, seed_frames):
    audio_loaded, _ = librosa.load(audio_path, sr=sr_model)
    audio_t = torch.from_numpy(audio_loaded).float().unsqueeze(0).to(device)
    sid = torch.zeros(1, 1).long().to(device)
    with torch.no_grad():
        motion_pred = model_disco(audio_t, sid, seed_frames=seed_frames, seed_motion=None)["motion_axis_angle"]
    t = motion_pred.shape[1]
    motion_pred = motion_pred.cpu().numpy().reshape(t, -1)
    npz_path = os.path.join(save_folder, "disco_output.npz")
    beat_format_save(npz_path, motion_pred, upsample=30 // pose_fps)
    return npz_path

def inference_emage(audio_path, sr_model, pose_fps):
    audio_loaded, _ = librosa.load(audio_path, sr=sr_model)
    audio_t = torch.from_numpy(audio_loaded).float().unsqueeze(0).to(device)
    sid = torch.zeros(1, 1).long().to(device)
    with torch.no_grad():
        latent_dict = model_emage.inference(audio_t, sid, emage_vq_model, masked_motion=None, mask=None)
        face_latent = latent_dict["rec_face"] if model_emage.cfg.lf > 0 and model_emage.cfg.cf == 0 else None
        upper_latent = latent_dict["rec_upper"] if model_emage.cfg.lu > 0 and model_emage.cfg.cu == 0 else None
        hands_latent = latent_dict["rec_hands"] if model_emage.cfg.lh > 0 and model_emage.cfg.ch == 0 else None
        lower_latent = latent_dict["rec_lower"] if model_emage.cfg.ll > 0 and model_emage.cfg.cl == 0 else None

        face_index = torch.max(F.log_softmax(latent_dict["cls_face"], dim=2), dim=2)[1] if model_emage.cfg.cf > 0 else None
        upper_index = torch.max(F.log_softmax(latent_dict["cls_upper"], dim=2), dim=2)[1] if model_emage.cfg.cu > 0 else None
        hands_index = torch.max(F.log_softmax(latent_dict["cls_hands"], dim=2), dim=2)[1] if model_emage.cfg.ch > 0 else None
        lower_index = torch.max(F.log_softmax(latent_dict["cls_lower"], dim=2), dim=2)[1] if model_emage.cfg.cl > 0 else None

        ref_trans = torch.zeros(1, 1, 3).to(device)
        all_pred = emage_vq_model.decode(
            face_latent=face_latent, 
            upper_latent=upper_latent, 
            lower_latent=lower_latent, 
            hands_latent=hands_latent,
            face_index=face_index, 
            upper_index=upper_index, 
            lower_index=lower_index, 
            hands_index=hands_index,
            get_global_motion=True, 
            ref_trans=ref_trans[:, 0]
        )

    motion_pred = all_pred["motion_axis_angle"]
    t = motion_pred.shape[1]
    motion_pred = motion_pred.cpu().numpy().reshape(t, -1)
    face_pred = all_pred["expression"].cpu().numpy().reshape(t, -1)
    trans_pred = all_pred["trans"].cpu().numpy().reshape(t, -1)
    npz_path = os.path.join(save_folder, "emage_output.npz")
    beat_format_save(npz_path, motion_pred, upsample=30 // pose_fps, expressions=face_pred, trans=trans_pred)
    return npz_path


def inference_app(audio, model_type, render_mesh=False, render_face=False, render_mesh_face=False):
    if audio is None:
        return [None, None, None, None, None]

    sr_in, audio_data = audio
    # --- TRUNCATE to 60 seconds if longer ---
    max_len = int(60 * sr_in)
    if len(audio_data) > max_len:
        audio_data = audio_data[:max_len]
    # ----------------------------------------

    tmp_audio_path = os.path.join(save_folder, "tmp_input.wav")
    sf.write(tmp_audio_path, audio_data, sr_in)

    if model_type == "CaMN (Upper only)":
        sr_model, pose_fps, seed_frames = model_camn.cfg.audio_sr, model_camn.cfg.pose_fps, model_camn.cfg.seed_frames
        npz_path = inference_camn(tmp_audio_path, sr_model, pose_fps, seed_frames)
    elif model_type == "DisCo (Upper only)":
        sr_model, pose_fps, seed_frames = model_disco.cfg.audio_sr, model_disco.cfg.pose_fps, model_disco.cfg.seed_frames
        npz_path = inference_disco(tmp_audio_path, sr_model, pose_fps, seed_frames)
    else:
        sr_model, pose_fps = model_emage.cfg.audio_sr, model_emage.cfg.pose_fps
        npz_path = inference_emage(tmp_audio_path, sr_model, pose_fps)

    motion_dict = np.load(npz_path, allow_pickle=True)
    v2d_body = render2d(motion_dict, (720, 480), face_only=False, remove_global=True)
    out_2d_body = npz_path.replace(".npz", "_2dbody.mp4")
    write_video(out_2d_body, v2d_body.permute(0, 2, 3, 1), fps=30)
    final_2d_body = out_2d_body.replace(".mp4", "_audio.mp4")
    fast_render.add_audio_to_video(out_2d_body, tmp_audio_path, final_2d_body)

    final_mesh_video = None
    final_meshface_video = None
    if render_mesh:
        mesh_vid = fast_render.render_one_sequence_no_gt(
            npz_path, save_folder, tmp_audio_path, "./emage_evaltools/smplx_models/"
        )
        final_mesh_video = mesh_vid

    if render_mesh_face and render_mesh:
        meshface_vid = fast_render.render_one_sequence_face_only(
            npz_path, save_folder, tmp_audio_path, "./emage_evaltools/smplx_models/"
        )
        final_meshface_video = meshface_vid

    final_face_video = None
    if render_face:
        v2d_face = render2d(motion_dict, (720, 480), face_only=True, remove_global=True)
        out_2d_face = npz_path.replace(".npz", "_2dface.mp4")
        write_video(out_2d_face, v2d_face.permute(0, 2, 3, 1), fps=30)
        final_face_video = out_2d_face.replace(".mp4", "_audio.mp4")
        fast_render.add_audio_to_video(out_2d_face, tmp_audio_path, final_face_video)

    return [final_2d_body, final_mesh_video, final_face_video, final_meshface_video, npz_path]

examples_data = [
    ["./examples/audio/2_scott_0_103_103_10s.wav", "DisCo (Upper only)", True, True, True],
    ["./examples/audio/2_scott_0_103_103_10s.wav", "CaMN (Upper only)", True, True, True],
    ["./examples/audio/2_scott_0_103_103_10s.wav", "EMAGE (Full body + Face)", True, True, True],
]

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown(
        """
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
          <div>
            <h1>EMAGE</h1>
            <span>Generating Face and Body Animation from Speech</span>
            <br>
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
              <a href="https://github.com/PantoMatrix/PantoMatrix"><img src="https://img.shields.io/badge/Project_Page-EMAGE-orange" alt="Project Page"></a>
              &nbsp;
              <a href="https://github.com/PantoMatrix/PantoMatrix"><img src="https://img.shields.io/badge/Github-Code-green"></a>
              &nbsp;
              <a href="https://github.com/PantoMatrix/PantoMatrix"><img src="https://img.shields.io/github/stars/PantoMatrix/PantoMatrix" alt="Stars"></a>
            </div>
          </div>
        </div>
        """
        )
        with gr.Row():
            input_audio = gr.Audio(type="numpy", label="Upload Audio")
            with gr.Column():
                model_type = gr.Radio(
                    choices=["DisCo (Upper only)", "CaMN (Upper only)", "EMAGE (Full body + Face)"],
                    value="CaMN (Upper only)",
                    label="Select Model: DisCo/CaMN for Upper, EMAGE for Full Body+Face"
                )
                render_face = gr.Checkbox(value=False, label="Render 2D Face Landmark (Fast ~4s for 7s)")
                render_mesh = gr.Checkbox(value=False, label="Render Mesh Body (Slow ~1min for 7s)")
                render_mesh_face = gr.Checkbox(value=False, label="Render Mesh Face (Extra Slow)")

        btn = gr.Button("Run Inference")

    with gr.Row():
        vid_body = gr.Video(label="2D Body Video")
        vid_mesh = gr.Video(label="Mesh Body Video (optional)")
        vid_face = gr.Video(label="2D Face Video (optional)")
        vid_meshface = gr.Video(label="Mesh Face Video (optional)")

    with gr.Column():
        gr.Markdown("Download Motion NPZ, Use Our [Blender Add-on](https://huggingface.co/datasets/H-Liu1997/BEAT2_Tools/blob/main/smplx_blender_addon_20230921.zip) for Visualization. [Demo](https://github.com/PantoMatrix/PantoMatrix/issues/178) of how to install on blender.")
        file_npz = gr.File(label="Motion NPZ")

    btn.click(
        fn=inference_app,
        inputs=[input_audio, model_type, render_mesh, render_face, render_mesh_face],
        outputs=[vid_body, vid_mesh, vid_face, vid_meshface, file_npz]
    )

    gr.Examples(
      examples=examples_data,
      inputs=[input_audio, model_type, render_mesh, render_face, render_mesh_face],
      outputs=[vid_body, vid_mesh, vid_face, vid_meshface, file_npz],
      fn=inference_app,
      cache_examples=True
      )

if __name__ == "__main__":
    demo.launch(share=True)