Spaces:
Sleeping
Sleeping
File size: 11,375 Bytes
2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 2d47d90 b03a8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import spaces
import os
# os.system("Xvfb :99 -ac &")
# os.environ["DISPLAY"] = ":99"
import OpenGL.GL as gl
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
import gradio as gr
import torch
import numpy as np
import soundfile as sf
import librosa
from torchvision.io import write_video
from emage_utils.motion_io import beat_format_save
from emage_utils import fast_render
from emage_utils.npz2pose import render2d
from models.camn_audio import CamnAudioModel
from models.disco_audio import DiscoAudioModel
from models.emage_audio import EmageAudioModel, EmageVQVAEConv, EmageVAEConv, EmageVQModel
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
save_folder = "./gradio_results"
os.makedirs(save_folder, exist_ok=True)
print(device)
if not os.path.exists("./emage_evaltools/smplx_models"):
import subprocess
subprocess.run(["git", "clone", "https://huggingface.co/H-Liu1997/emage_evaltools"])
model_camn = CamnAudioModel.from_pretrained("H-Liu1997/camn_audio").to(device).eval()
model_disco = DiscoAudioModel.from_pretrained("H-Liu1997/disco_audio").to(device).eval()
face_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/face").to(device).eval()
upper_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/upper").to(device).eval()
lower_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/lower").to(device).eval()
hands_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/hands").to(device).eval()
global_motion_ae = EmageVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/global").to(device).eval()
emage_vq_model = EmageVQModel(
face_model=face_motion_vq,
upper_model=upper_motion_vq,
lower_model=lower_motion_vq,
hands_model=hands_motion_vq,
global_model=global_motion_ae
).to(device).eval()
model_emage = EmageAudioModel.from_pretrained("H-Liu1997/emage_audio").to(device).eval()
def inference_camn(audio_path, sr_model, pose_fps, seed_frames):
audio_loaded, _ = librosa.load(audio_path, sr=sr_model)
audio_t = torch.from_numpy(audio_loaded).float().unsqueeze(0).to(device)
sid = torch.zeros(1, 1).long().to(device)
with torch.no_grad():
motion_pred = model_camn(audio_t, sid, seed_frames=seed_frames)["motion_axis_angle"]
t = motion_pred.shape[1]
motion_pred = motion_pred.cpu().numpy().reshape(t, -1)
npz_path = os.path.join(save_folder, "camn_output.npz")
beat_format_save(npz_path, motion_pred, upsample=30 // pose_fps)
return npz_path
def inference_disco(audio_path, sr_model, pose_fps, seed_frames):
audio_loaded, _ = librosa.load(audio_path, sr=sr_model)
audio_t = torch.from_numpy(audio_loaded).float().unsqueeze(0).to(device)
sid = torch.zeros(1, 1).long().to(device)
with torch.no_grad():
motion_pred = model_disco(audio_t, sid, seed_frames=seed_frames, seed_motion=None)["motion_axis_angle"]
t = motion_pred.shape[1]
motion_pred = motion_pred.cpu().numpy().reshape(t, -1)
npz_path = os.path.join(save_folder, "disco_output.npz")
beat_format_save(npz_path, motion_pred, upsample=30 // pose_fps)
return npz_path
def inference_emage(audio_path, sr_model, pose_fps):
audio_loaded, _ = librosa.load(audio_path, sr=sr_model)
audio_t = torch.from_numpy(audio_loaded).float().unsqueeze(0).to(device)
sid = torch.zeros(1, 1).long().to(device)
with torch.no_grad():
latent_dict = model_emage.inference(audio_t, sid, emage_vq_model, masked_motion=None, mask=None)
face_latent = latent_dict["rec_face"] if model_emage.cfg.lf > 0 and model_emage.cfg.cf == 0 else None
upper_latent = latent_dict["rec_upper"] if model_emage.cfg.lu > 0 and model_emage.cfg.cu == 0 else None
hands_latent = latent_dict["rec_hands"] if model_emage.cfg.lh > 0 and model_emage.cfg.ch == 0 else None
lower_latent = latent_dict["rec_lower"] if model_emage.cfg.ll > 0 and model_emage.cfg.cl == 0 else None
face_index = torch.max(F.log_softmax(latent_dict["cls_face"], dim=2), dim=2)[1] if model_emage.cfg.cf > 0 else None
upper_index = torch.max(F.log_softmax(latent_dict["cls_upper"], dim=2), dim=2)[1] if model_emage.cfg.cu > 0 else None
hands_index = torch.max(F.log_softmax(latent_dict["cls_hands"], dim=2), dim=2)[1] if model_emage.cfg.ch > 0 else None
lower_index = torch.max(F.log_softmax(latent_dict["cls_lower"], dim=2), dim=2)[1] if model_emage.cfg.cl > 0 else None
ref_trans = torch.zeros(1, 1, 3).to(device)
all_pred = emage_vq_model.decode(
face_latent=face_latent,
upper_latent=upper_latent,
lower_latent=lower_latent,
hands_latent=hands_latent,
face_index=face_index,
upper_index=upper_index,
lower_index=lower_index,
hands_index=hands_index,
get_global_motion=True,
ref_trans=ref_trans[:, 0]
)
motion_pred = all_pred["motion_axis_angle"]
t = motion_pred.shape[1]
motion_pred = motion_pred.cpu().numpy().reshape(t, -1)
face_pred = all_pred["expression"].cpu().numpy().reshape(t, -1)
trans_pred = all_pred["trans"].cpu().numpy().reshape(t, -1)
npz_path = os.path.join(save_folder, "emage_output.npz")
beat_format_save(npz_path, motion_pred, upsample=30 // pose_fps, expressions=face_pred, trans=trans_pred)
return npz_path
def inference_app(audio, model_type, render_mesh=False, render_face=False, render_mesh_face=False):
if audio is None:
return [None, None, None, None, None]
sr_in, audio_data = audio
# --- TRUNCATE to 60 seconds if longer ---
max_len = int(60 * sr_in)
if len(audio_data) > max_len:
audio_data = audio_data[:max_len]
# ----------------------------------------
tmp_audio_path = os.path.join(save_folder, "tmp_input.wav")
sf.write(tmp_audio_path, audio_data, sr_in)
if model_type == "CaMN (Upper only)":
sr_model, pose_fps, seed_frames = model_camn.cfg.audio_sr, model_camn.cfg.pose_fps, model_camn.cfg.seed_frames
npz_path = inference_camn(tmp_audio_path, sr_model, pose_fps, seed_frames)
elif model_type == "DisCo (Upper only)":
sr_model, pose_fps, seed_frames = model_disco.cfg.audio_sr, model_disco.cfg.pose_fps, model_disco.cfg.seed_frames
npz_path = inference_disco(tmp_audio_path, sr_model, pose_fps, seed_frames)
else:
sr_model, pose_fps = model_emage.cfg.audio_sr, model_emage.cfg.pose_fps
npz_path = inference_emage(tmp_audio_path, sr_model, pose_fps)
motion_dict = np.load(npz_path, allow_pickle=True)
v2d_body = render2d(motion_dict, (720, 480), face_only=False, remove_global=True)
out_2d_body = npz_path.replace(".npz", "_2dbody.mp4")
write_video(out_2d_body, v2d_body.permute(0, 2, 3, 1), fps=30)
final_2d_body = out_2d_body.replace(".mp4", "_audio.mp4")
fast_render.add_audio_to_video(out_2d_body, tmp_audio_path, final_2d_body)
final_mesh_video = None
final_meshface_video = None
if render_mesh:
mesh_vid = fast_render.render_one_sequence_no_gt(
npz_path, save_folder, tmp_audio_path, "./emage_evaltools/smplx_models/"
)
final_mesh_video = mesh_vid
if render_mesh_face and render_mesh:
meshface_vid = fast_render.render_one_sequence_face_only(
npz_path, save_folder, tmp_audio_path, "./emage_evaltools/smplx_models/"
)
final_meshface_video = meshface_vid
final_face_video = None
if render_face:
v2d_face = render2d(motion_dict, (720, 480), face_only=True, remove_global=True)
out_2d_face = npz_path.replace(".npz", "_2dface.mp4")
write_video(out_2d_face, v2d_face.permute(0, 2, 3, 1), fps=30)
final_face_video = out_2d_face.replace(".mp4", "_audio.mp4")
fast_render.add_audio_to_video(out_2d_face, tmp_audio_path, final_face_video)
return [final_2d_body, final_mesh_video, final_face_video, final_meshface_video, npz_path]
examples_data = [
["./examples/audio/2_scott_0_103_103_10s.wav", "DisCo (Upper only)", True, True, True],
["./examples/audio/2_scott_0_103_103_10s.wav", "CaMN (Upper only)", True, True, True],
["./examples/audio/2_scott_0_103_103_10s.wav", "EMAGE (Full body + Face)", True, True, True],
]
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1>EMAGE</h1>
<span>Generating Face and Body Animation from Speech</span>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/PantoMatrix/PantoMatrix"><img src="https://img.shields.io/badge/Project_Page-EMAGE-orange" alt="Project Page"></a>
<a href="https://github.com/PantoMatrix/PantoMatrix"><img src="https://img.shields.io/badge/Github-Code-green"></a>
<a href="https://github.com/PantoMatrix/PantoMatrix"><img src="https://img.shields.io/github/stars/PantoMatrix/PantoMatrix" alt="Stars"></a>
</div>
</div>
</div>
"""
)
with gr.Row():
input_audio = gr.Audio(type="numpy", label="Upload Audio")
with gr.Column():
model_type = gr.Radio(
choices=["DisCo (Upper only)", "CaMN (Upper only)", "EMAGE (Full body + Face)"],
value="CaMN (Upper only)",
label="Select Model: DisCo/CaMN for Upper, EMAGE for Full Body+Face"
)
render_face = gr.Checkbox(value=False, label="Render 2D Face Landmark (Fast ~4s for 7s)")
render_mesh = gr.Checkbox(value=False, label="Render Mesh Body (Slow ~1min for 7s)")
render_mesh_face = gr.Checkbox(value=False, label="Render Mesh Face (Extra Slow)")
btn = gr.Button("Run Inference")
with gr.Row():
vid_body = gr.Video(label="2D Body Video")
vid_mesh = gr.Video(label="Mesh Body Video (optional)")
vid_face = gr.Video(label="2D Face Video (optional)")
vid_meshface = gr.Video(label="Mesh Face Video (optional)")
with gr.Column():
gr.Markdown("Download Motion NPZ, Use Our [Blender Add-on](https://huggingface.co/datasets/H-Liu1997/BEAT2_Tools/blob/main/smplx_blender_addon_20230921.zip) for Visualization. [Demo](https://github.com/PantoMatrix/PantoMatrix/issues/178) of how to install on blender.")
file_npz = gr.File(label="Motion NPZ")
btn.click(
fn=inference_app,
inputs=[input_audio, model_type, render_mesh, render_face, render_mesh_face],
outputs=[vid_body, vid_mesh, vid_face, vid_meshface, file_npz]
)
gr.Examples(
examples=examples_data,
inputs=[input_audio, model_type, render_mesh, render_face, render_mesh_face],
outputs=[vid_body, vid_mesh, vid_face, vid_meshface, file_npz],
fn=inference_app,
cache_examples=True
)
if __name__ == "__main__":
demo.launch(share=True)
|