Spaces:
Sleeping
Sleeping
File size: 13,197 Bytes
b03a8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
"""
Thanks to the author of this API
Tomoya Akiyama: https://research.cyberagent.ai/people/tomoya_akiyama/
"""
import math
import cv2
import numpy as np
import torch
import smplx
from pytorch3d.renderer import PerspectiveCameras
from torchvision.io import write_video
from torchvision.transforms.functional import convert_image_dtype
SMPLX_BODY_JOINT_EDGES = [
{"indices": [12, 17], "color": [255, 0, 0]},
{"indices": [12, 16], "color": [255, 85, 0]},
{"indices": [17, 19], "color": [255, 170, 0]},
{"indices": [19, 21], "color": [255, 255, 0]},
{"indices": [16, 18], "color": [170, 255, 0]},
{"indices": [18, 20], "color": [85, 255, 0]},
{"indices": [2, 12], "color": [0, 255, 0]},
{"indices": [2, 5], "color": [0, 255, 85]},
{"indices": [5, 8], "color": [0, 255, 170]},
{"indices": [1, 12], "color": [0, 255, 255]},
{"indices": [1, 4], "color": [0, 170, 255]},
{"indices": [4, 7], "color": [0, 85, 255]},
{"indices": [12, 55], "color": [0, 0, 255]},
{"indices": [55, 56], "color": [85, 0, 255]},
{"indices": [56, 58], "color": [170, 0, 255]},
{"indices": [55, 57], "color": [255, 0, 255]},
{"indices": [57, 59], "color": [255, 0, 170]},
]
SMPLX_BODY_JOINTS = [
{"index": 55, "color": [255, 0, 0]},
{"index": 12, "color": [255, 85, 0]},
{"index": 17, "color": [255, 170, 0]},
{"index": 19, "color": [255, 255, 0]},
{"index": 21, "color": [170, 255, 0]},
{"index": 16, "color": [85, 255, 0]},
{"index": 18, "color": [0, 255, 0]},
{"index": 20, "color": [0, 255, 85]},
{"index": 2, "color": [0, 255, 170]},
{"index": 5, "color": [0, 255, 255]},
{"index": 8, "color": [0, 170, 255]},
{"index": 1, "color": [0, 85, 255]},
{"index": 4, "color": [0, 0, 255]},
{"index": 7, "color": [85, 0, 255]},
{"index": 56, "color": [170, 0, 255]},
{"index": 57, "color": [255, 0, 255]},
{"index": 58, "color": [255, 0, 170]},
{"index": 59, "color": [255, 0, 85]},
]
SMPLX_HAND_JOINT_EDGES = [
{"indices": [21, 52], "color": [255, 0, 0]},
{"indices": [52, 53], "color": [255, 76, 0]},
{"indices": [53, 54], "color": [255, 153, 0]},
{"indices": [54, 71], "color": [255, 229, 0]},
{"indices": [21, 40], "color": [204, 255, 0]},
{"indices": [40, 41], "color": [128, 255, 0]},
{"indices": [41, 42], "color": [51, 255, 0]},
{"indices": [42, 72], "color": [0, 255, 26]},
{"indices": [21, 43], "color": [0, 255, 102]},
{"indices": [43, 44], "color": [0, 255, 179]},
{"indices": [44, 45], "color": [0, 255, 255]},
{"indices": [45, 73], "color": [0, 179, 255]},
{"indices": [21, 49], "color": [0, 102, 255]},
{"indices": [49, 50], "color": [0, 26, 255]},
{"indices": [50, 51], "color": [51, 0, 255]},
{"indices": [51, 74], "color": [128, 0, 255]},
{"indices": [21, 46], "color": [204, 0, 255]},
{"indices": [46, 47], "color": [255, 0, 230]},
{"indices": [47, 48], "color": [255, 0, 153]},
{"indices": [48, 75], "color": [255, 0, 77]},
{"indices": [20, 37], "color": [255, 0, 0]},
{"indices": [37, 38], "color": [255, 76, 0]},
{"indices": [38, 39], "color": [255, 153, 0]},
{"indices": [39, 66], "color": [255, 229, 0]},
{"indices": [20, 25], "color": [204, 255, 0]},
{"indices": [25, 26], "color": [128, 255, 0]},
{"indices": [26, 27], "color": [51, 255, 0]},
{"indices": [27, 67], "color": [0, 255, 26]},
{"indices": [20, 28], "color": [0, 255, 102]},
{"indices": [28, 29], "color": [0, 255, 179]},
{"indices": [29, 30], "color": [0, 255, 255]},
{"indices": [30, 68], "color": [0, 179, 255]},
{"indices": [20, 34], "color": [0, 102, 255]},
{"indices": [34, 35], "color": [0, 26, 255]},
{"indices": [35, 36], "color": [51, 0, 255]},
{"indices": [36, 69], "color": [128, 0, 255]},
{"indices": [20, 31], "color": [204, 0, 255]},
{"indices": [31, 32], "color": [255, 0, 230]},
{"indices": [32, 33], "color": [255, 0, 153]},
{"indices": [33, 70], "color": [255, 0, 77]},
]
SMPLX_HAND_JOINTS = [20, 21] + list(range(25, 55)) + list(range(66, 76))
SMPLX_FACE_LANDMARKS = list(range(76, 144))
def _draw_bodypose(canvas, joints_np):
c = canvas.copy()
for edge_dict in SMPLX_BODY_JOINT_EDGES:
i = edge_dict["indices"]
color = edge_dict["color"]
xy = joints_np[i]
center = np.mean(xy, axis=0).astype(int)
length = np.linalg.norm(xy[0] - xy[1])
angle = math.degrees(math.atan2(xy[0, 1] - xy[1, 1], xy[0, 0] - xy[1, 0]))
polygon = cv2.ellipse2Poly(center, (int(length / 2), 4), int(angle), 0, 360, 1)
cv2.fillConvexPoly(c, polygon, color)
c = (c * 0.6).astype(np.uint8)
for j_info in SMPLX_BODY_JOINTS:
center = joints_np[j_info["index"]].astype(int)
cv2.circle(c, tuple(center), 4, (255, 255, 255), -1)
return c
def _draw_handpose(canvas, joints_np):
c = canvas.copy()
for edge_dict in SMPLX_HAND_JOINT_EDGES:
i = edge_dict["indices"]
color = edge_dict["color"]
xy = joints_np[i].astype(int)
if xy.min() > 0:
cv2.line(c, tuple(xy[0]), tuple(xy[1]), color, 2)
for j_idx in SMPLX_HAND_JOINTS:
center = joints_np[j_idx].astype(int)
if center.min() > 0:
cv2.circle(c, tuple(center), 4, (0, 0, 255), -1)
return c
def _draw_facepose(canvas, joints_np):
c = canvas.copy()
for j_idx in SMPLX_FACE_LANDMARKS:
center = joints_np[j_idx].astype(int)
if center.min() > 0:
cv2.circle(c, tuple(center), 3, (255, 255, 255), -1)
return c
def _draw_joints_2d(joints_2d, height, width, face_only):
outputs = []
for j2d in joints_2d:
# Convert each frame's joints to NumPy
j2d_np = j2d.detach().cpu().numpy()
c = np.zeros((height, width, 3), dtype=np.uint8)
if face_only:
c = _draw_facepose(c, j2d_np)
else:
c = _draw_bodypose(c, j2d_np)
c = _draw_handpose(c, j2d_np)
c = _draw_facepose(c, j2d_np)
outputs.append(convert_image_dtype(torch.tensor(c, dtype=torch.uint8), torch.uint8))
return torch.stack(outputs).permute(0, 3, 1, 2)
def _draw_joints_3d(joints_3d, height, width, face_only):
outputs = []
for j3d in joints_3d:
xy = j3d[:, :2].detach().cpu().numpy().copy()
z = j3d[:, 2].detach().cpu().numpy().copy()
z_min, z_max = z.min(), z.max()
z_norm = (z - z_min) / (z_max - z_min + 1e-8)
# Normalize XY to fit in the image
xy[:, 0] = (xy[:, 0] - xy[:, 0].min()) / (xy[:, 0].max() - xy[:, 0].min() + 1e-8) * (width - 1)
xy[:, 1] = (xy[:, 1] - xy[:, 1].min()) / (xy[:, 1].max() - xy[:, 1].min() + 1e-8) * (height - 1)
c = np.zeros((height, width, 3), dtype=np.uint8)
# j2d: [num_joints, 3], last dim is the normalized z
j2d = np.hstack([xy, z_norm.reshape(-1, 1)])
if face_only:
c = _draw_facepose(c, j2d)
else:
c = _draw_bodypose(c, j2d)
c = _draw_handpose(c, j2d)
c = _draw_facepose(c, j2d)
outputs.append(convert_image_dtype(torch.tensor(c, dtype=torch.uint8), torch.uint8))
return torch.stack(outputs).permute(0, 3, 1, 2)
def _load_motion_dict(
motion_dict,
device,
remove_global=False,
face_only=False
):
n = motion_dict["poses"].shape[0]
smplx_inputs = {
"betas": torch.tensor(motion_dict["betas"]).view(1, -1),
"global_orient": torch.tensor(motion_dict["poses"][:, :3]),
"body_pose": torch.tensor(motion_dict["poses"][:, 3 : 22 * 3]),
"left_hand_pose": torch.tensor(motion_dict["poses"][:, 25 * 3 : 40 * 3]),
"right_hand_pose": torch.tensor(motion_dict["poses"][:, 40 * 3 : 55 * 3]),
"transl": torch.tensor(motion_dict["trans"]),
"expression": torch.tensor(motion_dict["expressions"]),
"jaw_pose": torch.tensor(motion_dict["poses"][:, 22 * 3 : 23 * 3]),
"leye_pose": torch.tensor(motion_dict["poses"][:, 23 * 3 : 24 * 3]),
"reye_pose": torch.tensor(motion_dict["poses"][:, 24 * 3 : 25 * 3]),
}
# Move everything to device
for k, v in smplx_inputs.items():
smplx_inputs[k] = v.to(device=device, dtype=torch.float32)
# 1) If remove_global == True, keep 'transl' at the first frame's value for all frames
if remove_global:
first_frame_trans = smplx_inputs["transl"][0].clone()
smplx_inputs["transl"][:] = first_frame_trans
# 2) If face_only == True, zero out everything but the jaw pose
if face_only:
smplx_inputs["global_orient"][:] = 0.0
smplx_inputs["body_pose"][:] = 0.0
smplx_inputs["left_hand_pose"][:] = 0.0
smplx_inputs["right_hand_pose"][:] = 0.0
smplx_inputs["leye_pose"][:] = 0.0
smplx_inputs["reye_pose"][:] = 0.0
# The jaw_pose and expression remain as is (allowing mouth movements),
# so the head is "frozen" in place except for jaw animation.
return n, smplx_inputs
def _get_smplx_model(smplx_folder, batch_size, device):
smplx_model = smplx.create(
model_path=smplx_folder,
model_type="smplx",
gender="NEUTRAL_2020",
create_global_orient=True,
create_body_pose=True,
create_betas=True,
create_left_hand_pose=True,
create_right_hand_pose=True,
create_expression=True,
create_jaw_pose=True,
create_leye_pose=True,
create_reye_pose=True,
create_transl=True,
use_face_contour=True,
use_pca=False,
flat_hand_mean=False,
use_hands=True,
use_face=True,
num_betas=300,
num_expression_coeffs=100,
batch_size=batch_size,
dtype=torch.float32,
).to(device)
return smplx_model.eval()
def _get_cameras(
batch_size,
height,
width,
focal_length,
camera_transl,
device
):
r = torch.tensor(
[[-1, 0, 0],
[ 0, 1, 0],
[ 0, 0, 1]],
device=device, dtype=torch.float32
)
t = torch.tensor(camera_transl, device=device, dtype=torch.float32)
cameras = PerspectiveCameras(
focal_length=focal_length,
principal_point=((width / 2, height / 2),),
in_ndc=False,
R=r.expand(batch_size, -1, -1),
T=t.expand(batch_size, -1),
image_size=((height, width),),
device=device,
)
return cameras
# New fix code snippet (inside render2d or render3d):
def render2d(
motion_dict,
resolution=(512, 512),
face_only=False,
remove_global=False,
smplx_folder="./emage_evaltools/smplx_models/",
focal_length=5000.0,
camera_transl=(0.0, -0.8, 16.0),
device=torch.device("cuda"),
):
h, w = resolution
# for face-only, override camera to zoom in
if face_only:
camera_transl = (0.0, -1.55, 6.0)
focal_length = 10000.0
n, smplx_inputs = _load_motion_dict(
motion_dict, device, remove_global=remove_global, face_only=face_only
)
model = _get_smplx_model(smplx_folder, n, device)
out = model(**smplx_inputs)
cams = _get_cameras(n, h, w, focal_length, camera_transl, device)
j2d = cams.transform_points_screen(out.joints)[:, :, :2]
frames_2d = _draw_joints_2d(j2d, h, w, face_only)
return frames_2d
def render3d(
motion_dict,
resolution=(512, 512),
face_only=False,
remove_global=False,
smplx_folder="./emage_evaltools/smplx_models/",
device=torch.device("cuda"),
):
h, w = resolution
n, smplx_inputs = _load_motion_dict(
motion_dict,
device,
remove_global=remove_global,
face_only=face_only
)
model = _get_smplx_model(smplx_folder, n, device)
out = model(**smplx_inputs)
frames_3d = _draw_joints_3d(out.joints, h, w, face_only)
return frames_3d
def example_usage():
# Suppose we have an NPZ with "poses", "trans", "betas", "expressions", etc.
motion_dict = np.load("/result_motion.npz", allow_pickle=True)
# 2D face (freeze body, remove global motion)
v2d_face = render2d(
motion_dict,
resolution=(512, 512),
face_only=True,
remove_global=True
)
write_video("/save_path_face_2d.mp4", v2d_face.permute(0, 2, 3, 1), fps=30)
# 2D body (show entire body, keep global motion)
v2d_body = render2d(
motion_dict,
resolution=(1080, 1920),
face_only=False,
remove_global=False
)
write_video("/save_path_body_2d.mp4", v2d_body.permute(0, 2, 3, 1), fps=30)
# 3D face (freeze body, remove global motion)
v3d_face = render3d(
motion_dict,
resolution=(512, 512),
face_only=True,
remove_global=True
)
write_video("/save_path_face_3d.mp4", v3d_face.permute(0, 2, 3, 1), fps=30)
# 3D body (show entire body, keep global motion)
v3d_body = render3d(
motion_dict,
resolution=(1080, 1920),
face_only=False,
remove_global=False
)
write_video("/save_path_body_3d.mp4", v3d_body.permute(0, 2, 3, 1), fps=30)
if __name__ == "__main__":
example_usage()
|