File size: 13,197 Bytes
b03a8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""
Thanks to the author of this API 
Tomoya Akiyama: https://research.cyberagent.ai/people/tomoya_akiyama/
"""

import math
import cv2
import numpy as np
import torch
import smplx
from pytorch3d.renderer import PerspectiveCameras
from torchvision.io import write_video
from torchvision.transforms.functional import convert_image_dtype

SMPLX_BODY_JOINT_EDGES = [
    {"indices": [12, 17], "color": [255, 0, 0]},
    {"indices": [12, 16], "color": [255, 85, 0]},
    {"indices": [17, 19], "color": [255, 170, 0]},
    {"indices": [19, 21], "color": [255, 255, 0]},
    {"indices": [16, 18], "color": [170, 255, 0]},
    {"indices": [18, 20], "color": [85, 255, 0]},
    {"indices": [2, 12], "color": [0, 255, 0]},
    {"indices": [2, 5], "color": [0, 255, 85]},
    {"indices": [5, 8], "color": [0, 255, 170]},
    {"indices": [1, 12], "color": [0, 255, 255]},
    {"indices": [1, 4], "color": [0, 170, 255]},
    {"indices": [4, 7], "color": [0, 85, 255]},
    {"indices": [12, 55], "color": [0, 0, 255]},
    {"indices": [55, 56], "color": [85, 0, 255]},
    {"indices": [56, 58], "color": [170, 0, 255]},
    {"indices": [55, 57], "color": [255, 0, 255]},
    {"indices": [57, 59], "color": [255, 0, 170]},
]
SMPLX_BODY_JOINTS = [
    {"index": 55, "color": [255, 0, 0]},
    {"index": 12, "color": [255, 85, 0]},
    {"index": 17, "color": [255, 170, 0]},
    {"index": 19, "color": [255, 255, 0]},
    {"index": 21, "color": [170, 255, 0]},
    {"index": 16, "color": [85, 255, 0]},
    {"index": 18, "color": [0, 255, 0]},
    {"index": 20, "color": [0, 255, 85]},
    {"index": 2, "color": [0, 255, 170]},
    {"index": 5, "color": [0, 255, 255]},
    {"index": 8, "color": [0, 170, 255]},
    {"index": 1, "color": [0, 85, 255]},
    {"index": 4, "color": [0, 0, 255]},
    {"index": 7, "color": [85, 0, 255]},
    {"index": 56, "color": [170, 0, 255]},
    {"index": 57, "color": [255, 0, 255]},
    {"index": 58, "color": [255, 0, 170]},
    {"index": 59, "color": [255, 0, 85]},
]
SMPLX_HAND_JOINT_EDGES = [
    {"indices": [21, 52], "color": [255, 0, 0]},
    {"indices": [52, 53], "color": [255, 76, 0]},
    {"indices": [53, 54], "color": [255, 153, 0]},
    {"indices": [54, 71], "color": [255, 229, 0]},
    {"indices": [21, 40], "color": [204, 255, 0]},
    {"indices": [40, 41], "color": [128, 255, 0]},
    {"indices": [41, 42], "color": [51, 255, 0]},
    {"indices": [42, 72], "color": [0, 255, 26]},
    {"indices": [21, 43], "color": [0, 255, 102]},
    {"indices": [43, 44], "color": [0, 255, 179]},
    {"indices": [44, 45], "color": [0, 255, 255]},
    {"indices": [45, 73], "color": [0, 179, 255]},
    {"indices": [21, 49], "color": [0, 102, 255]},
    {"indices": [49, 50], "color": [0, 26, 255]},
    {"indices": [50, 51], "color": [51, 0, 255]},
    {"indices": [51, 74], "color": [128, 0, 255]},
    {"indices": [21, 46], "color": [204, 0, 255]},
    {"indices": [46, 47], "color": [255, 0, 230]},
    {"indices": [47, 48], "color": [255, 0, 153]},
    {"indices": [48, 75], "color": [255, 0, 77]},
    {"indices": [20, 37], "color": [255, 0, 0]},
    {"indices": [37, 38], "color": [255, 76, 0]},
    {"indices": [38, 39], "color": [255, 153, 0]},
    {"indices": [39, 66], "color": [255, 229, 0]},
    {"indices": [20, 25], "color": [204, 255, 0]},
    {"indices": [25, 26], "color": [128, 255, 0]},
    {"indices": [26, 27], "color": [51, 255, 0]},
    {"indices": [27, 67], "color": [0, 255, 26]},
    {"indices": [20, 28], "color": [0, 255, 102]},
    {"indices": [28, 29], "color": [0, 255, 179]},
    {"indices": [29, 30], "color": [0, 255, 255]},
    {"indices": [30, 68], "color": [0, 179, 255]},
    {"indices": [20, 34], "color": [0, 102, 255]},
    {"indices": [34, 35], "color": [0, 26, 255]},
    {"indices": [35, 36], "color": [51, 0, 255]},
    {"indices": [36, 69], "color": [128, 0, 255]},
    {"indices": [20, 31], "color": [204, 0, 255]},
    {"indices": [31, 32], "color": [255, 0, 230]},
    {"indices": [32, 33], "color": [255, 0, 153]},
    {"indices": [33, 70], "color": [255, 0, 77]},
]
SMPLX_HAND_JOINTS = [20, 21] + list(range(25, 55)) + list(range(66, 76))
SMPLX_FACE_LANDMARKS = list(range(76, 144))

def _draw_bodypose(canvas, joints_np):
    c = canvas.copy()
    for edge_dict in SMPLX_BODY_JOINT_EDGES:
        i = edge_dict["indices"]
        color = edge_dict["color"]
        xy = joints_np[i]
        center = np.mean(xy, axis=0).astype(int)
        length = np.linalg.norm(xy[0] - xy[1])
        angle = math.degrees(math.atan2(xy[0, 1] - xy[1, 1], xy[0, 0] - xy[1, 0]))
        polygon = cv2.ellipse2Poly(center, (int(length / 2), 4), int(angle), 0, 360, 1)
        cv2.fillConvexPoly(c, polygon, color)
    c = (c * 0.6).astype(np.uint8)
    for j_info in SMPLX_BODY_JOINTS:
        center = joints_np[j_info["index"]].astype(int)
        cv2.circle(c, tuple(center), 4, (255, 255, 255), -1)
    return c

def _draw_handpose(canvas, joints_np):
    c = canvas.copy()
    for edge_dict in SMPLX_HAND_JOINT_EDGES:
        i = edge_dict["indices"]
        color = edge_dict["color"]
        xy = joints_np[i].astype(int)
        if xy.min() > 0:
            cv2.line(c, tuple(xy[0]), tuple(xy[1]), color, 2)
    for j_idx in SMPLX_HAND_JOINTS:
        center = joints_np[j_idx].astype(int)
        if center.min() > 0:
            cv2.circle(c, tuple(center), 4, (0, 0, 255), -1)
    return c

def _draw_facepose(canvas, joints_np):
    c = canvas.copy()
    for j_idx in SMPLX_FACE_LANDMARKS:
        center = joints_np[j_idx].astype(int)
        if center.min() > 0:
            cv2.circle(c, tuple(center), 3, (255, 255, 255), -1)
    return c

def _draw_joints_2d(joints_2d, height, width, face_only):
    outputs = []
    for j2d in joints_2d:
        # Convert each frame's joints to NumPy
        j2d_np = j2d.detach().cpu().numpy()
        c = np.zeros((height, width, 3), dtype=np.uint8)
        if face_only:
            c = _draw_facepose(c, j2d_np)
        else:
            c = _draw_bodypose(c, j2d_np)
            c = _draw_handpose(c, j2d_np)
            c = _draw_facepose(c, j2d_np)
        outputs.append(convert_image_dtype(torch.tensor(c, dtype=torch.uint8), torch.uint8))
    return torch.stack(outputs).permute(0, 3, 1, 2)

def _draw_joints_3d(joints_3d, height, width, face_only):
    outputs = []
    for j3d in joints_3d:
        xy = j3d[:, :2].detach().cpu().numpy().copy()
        z = j3d[:, 2].detach().cpu().numpy().copy()
        z_min, z_max = z.min(), z.max()
        z_norm = (z - z_min) / (z_max - z_min + 1e-8)

        # Normalize XY to fit in the image
        xy[:, 0] = (xy[:, 0] - xy[:, 0].min()) / (xy[:, 0].max() - xy[:, 0].min() + 1e-8) * (width - 1)
        xy[:, 1] = (xy[:, 1] - xy[:, 1].min()) / (xy[:, 1].max() - xy[:, 1].min() + 1e-8) * (height - 1)

        c = np.zeros((height, width, 3), dtype=np.uint8)
        # j2d: [num_joints, 3], last dim is the normalized z
        j2d = np.hstack([xy, z_norm.reshape(-1, 1)])
        if face_only:
            c = _draw_facepose(c, j2d)
        else:
            c = _draw_bodypose(c, j2d)
            c = _draw_handpose(c, j2d)
            c = _draw_facepose(c, j2d)

        outputs.append(convert_image_dtype(torch.tensor(c, dtype=torch.uint8), torch.uint8))
    return torch.stack(outputs).permute(0, 3, 1, 2)

def _load_motion_dict(
    motion_dict,
    device,
    remove_global=False,
    face_only=False
):
    n = motion_dict["poses"].shape[0]
    smplx_inputs = {
        "betas": torch.tensor(motion_dict["betas"]).view(1, -1),
        "global_orient": torch.tensor(motion_dict["poses"][:, :3]),
        "body_pose": torch.tensor(motion_dict["poses"][:, 3 : 22 * 3]),
        "left_hand_pose": torch.tensor(motion_dict["poses"][:, 25 * 3 : 40 * 3]),
        "right_hand_pose": torch.tensor(motion_dict["poses"][:, 40 * 3 : 55 * 3]),
        "transl": torch.tensor(motion_dict["trans"]),
        "expression": torch.tensor(motion_dict["expressions"]),
        "jaw_pose": torch.tensor(motion_dict["poses"][:, 22 * 3 : 23 * 3]),
        "leye_pose": torch.tensor(motion_dict["poses"][:, 23 * 3 : 24 * 3]),
        "reye_pose": torch.tensor(motion_dict["poses"][:, 24 * 3 : 25 * 3]),
    }
    # Move everything to device
    for k, v in smplx_inputs.items():
        smplx_inputs[k] = v.to(device=device, dtype=torch.float32)

    # 1) If remove_global == True, keep 'transl' at the first frame's value for all frames
    if remove_global:
        first_frame_trans = smplx_inputs["transl"][0].clone()
        smplx_inputs["transl"][:] = first_frame_trans

    # 2) If face_only == True, zero out everything but the jaw pose
    if face_only:
        smplx_inputs["global_orient"][:] = 0.0
        smplx_inputs["body_pose"][:] = 0.0
        smplx_inputs["left_hand_pose"][:] = 0.0
        smplx_inputs["right_hand_pose"][:] = 0.0
        smplx_inputs["leye_pose"][:] = 0.0
        smplx_inputs["reye_pose"][:] = 0.0
        # The jaw_pose and expression remain as is (allowing mouth movements),
        # so the head is "frozen" in place except for jaw animation.

    return n, smplx_inputs

def _get_smplx_model(smplx_folder, batch_size, device):
    smplx_model = smplx.create(
        model_path=smplx_folder,
        model_type="smplx",
        gender="NEUTRAL_2020",
        create_global_orient=True,
        create_body_pose=True,
        create_betas=True,
        create_left_hand_pose=True,
        create_right_hand_pose=True,
        create_expression=True,
        create_jaw_pose=True,
        create_leye_pose=True,
        create_reye_pose=True,
        create_transl=True,
        use_face_contour=True,
        use_pca=False,
        flat_hand_mean=False,
        use_hands=True,
        use_face=True,
        num_betas=300,
        num_expression_coeffs=100,
        batch_size=batch_size,
        dtype=torch.float32,
    ).to(device)
    return smplx_model.eval()

def _get_cameras(
    batch_size,
    height,
    width,
    focal_length,
    camera_transl,
    device
):
    r = torch.tensor(
        [[-1, 0, 0],
         [ 0, 1, 0],
         [ 0, 0, 1]], 
        device=device, dtype=torch.float32
    )
    t = torch.tensor(camera_transl, device=device, dtype=torch.float32)
    cameras = PerspectiveCameras(
        focal_length=focal_length,
        principal_point=((width / 2, height / 2),),
        in_ndc=False,
        R=r.expand(batch_size, -1, -1),
        T=t.expand(batch_size, -1),
        image_size=((height, width),),
        device=device,
    )
    return cameras

# New fix code snippet (inside render2d or render3d):
def render2d(
    motion_dict,
    resolution=(512, 512),
    face_only=False,
    remove_global=False,
    smplx_folder="./emage_evaltools/smplx_models/",
    focal_length=5000.0,
    camera_transl=(0.0, -0.8, 16.0),
    device=torch.device("cuda"),
):
    h, w = resolution
    # for face-only, override camera to zoom in
    if face_only:
        camera_transl = (0.0, -1.55, 6.0)
        focal_length = 10000.0
    n, smplx_inputs = _load_motion_dict(
        motion_dict, device, remove_global=remove_global, face_only=face_only
    )
    model = _get_smplx_model(smplx_folder, n, device)
    out = model(**smplx_inputs)
    cams = _get_cameras(n, h, w, focal_length, camera_transl, device)
    j2d = cams.transform_points_screen(out.joints)[:, :, :2]
    frames_2d = _draw_joints_2d(j2d, h, w, face_only)
    return frames_2d

def render3d(
    motion_dict,
    resolution=(512, 512),
    face_only=False,
    remove_global=False,
    smplx_folder="./emage_evaltools/smplx_models/",
    device=torch.device("cuda"),
):
    h, w = resolution
    n, smplx_inputs = _load_motion_dict(
        motion_dict,
        device,
        remove_global=remove_global,
        face_only=face_only
    )
    model = _get_smplx_model(smplx_folder, n, device)
    out = model(**smplx_inputs)
    frames_3d = _draw_joints_3d(out.joints, h, w, face_only)
    return frames_3d

def example_usage():
    # Suppose we have an NPZ with "poses", "trans", "betas", "expressions", etc.
    motion_dict = np.load("/result_motion.npz", allow_pickle=True)

    # 2D face (freeze body, remove global motion)
    v2d_face = render2d(
        motion_dict,
        resolution=(512, 512),
        face_only=True,
        remove_global=True
    )
    write_video("/save_path_face_2d.mp4", v2d_face.permute(0, 2, 3, 1), fps=30)

    # 2D body (show entire body, keep global motion)
    v2d_body = render2d(
        motion_dict,
        resolution=(1080, 1920),
        face_only=False,
        remove_global=False
    )
    write_video("/save_path_body_2d.mp4", v2d_body.permute(0, 2, 3, 1), fps=30)

    # 3D face (freeze body, remove global motion)
    v3d_face = render3d(
        motion_dict,
        resolution=(512, 512),
        face_only=True,
        remove_global=True
    )
    write_video("/save_path_face_3d.mp4", v3d_face.permute(0, 2, 3, 1), fps=30)

    # 3D body (show entire body, keep global motion)
    v3d_body = render3d(
        motion_dict,
        resolution=(1080, 1920),
        face_only=False,
        remove_global=False
    )
    write_video("/save_path_body_3d.mp4", v3d_body.permute(0, 2, 3, 1), fps=30)

if __name__ == "__main__":
    example_usage()