Spaces:
Sleeping
Sleeping
import os | |
import json | |
import numpy as np | |
import pandas as pd | |
from tqdm import tqdm | |
import librosa | |
# Example parameters | |
stride = 20 | |
motion_length = 64 | |
speaker_target = 2 | |
use_additional = False | |
root_dir = './beat_english_v2.0.0/' | |
output_dir = "./datasets/data_json/" | |
os.makedirs(output_dir, exist_ok=True) | |
train_test_split_path = './beat_english_v2.0.0/train_test_split.csv' | |
df = pd.read_csv(train_test_split_path) | |
filtered_df = df[(df['id'].str.split('_').str[0].astype(int) == speaker_target) & (df['type'] != 'additional')] | |
clips = [] | |
for idx, row_item in tqdm(filtered_df.iterrows()): | |
video_id = row_item['id'] | |
mode = row_item['type'] | |
# check exist | |
npz_path = os.path.join(root_dir, "smplxflame_30", video_id + ".npz") | |
wav_path = os.path.join(root_dir, "wave16k", video_id + ".wav") | |
try: | |
motion_data = np.load(npz_path, allow_pickle=True) | |
except: | |
print(f"cant open {npz_path}") | |
try: | |
wave_data, _ = librosa.load(wav_path, sr=None) | |
except: | |
print(f"cant open {wav_path}") | |
motion = motion_data['poses'] | |
total_len = motion.shape[0] | |
for i in range(0, total_len - motion_length, stride): | |
clip = { | |
"video_id": video_id, | |
"motion_path": npz_path, | |
"audio_path": wav_path, | |
"mode": mode, | |
"start_idx": i, | |
"end_idx": i + motion_length | |
} | |
clips.append(clip) | |
output_json = os.path.join(output_dir, f"beat2_s{stride}_l{motion_length}_speaker{speaker_target}.json") | |
with open(output_json, 'w') as f: | |
json.dump(clips, f, indent=4) | |