File size: 7,000 Bytes
1896bc8
b537793
844c526
b537793
844c526
 
 
b537793
844c526
 
b537793
 
 
844c526
b537793
 
1896bc8
844c526
 
 
 
 
 
34db65e
844c526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b537793
1896bc8
 
 
 
 
 
c497b41
 
 
 
 
 
 
 
 
 
844c526
85f677d
 
 
 
844c526
 
1896bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f677d
1896bc8
 
 
 
 
 
 
 
 
 
844c526
 
 
 
 
34db65e
 
844c526
 
 
 
 
34db65e
 
 
 
 
 
 
 
 
 
 
 
 
 
844c526
 
1896bc8
 
b537793
 
1896bc8
 
 
b537793
1896bc8
b537793
 
 
 
1896bc8
 
 
 
 
 
 
b537793
1896bc8
 
 
 
844c526
b537793
 
 
1896bc8
 
 
 
 
 
 
 
 
 
 
 
b537793
1896bc8
b537793
1896bc8
 
b537793
 
1896bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b537793
1896bc8
 
 
 
 
1056de2
1896bc8
 
 
 
 
 
 
 
844c526
 
 
 
1056de2
1896bc8
b537793
 
1896bc8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import subprocess
import torch

import gradio as gr

from gradio_client.client import DEFAULT_TEMP_DIR
from playwright.sync_api import sync_playwright
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
from typing import List
from PIL import Image

from transformers.image_transforms import resize, to_channel_dimension_format


API_TOKEN = os.getenv("HF_AUTH_TOKEN")
DEVICE = torch.device("cuda")
PROCESSOR = AutoProcessor.from_pretrained(
    "HuggingFaceM4/img2html",
    token=API_TOKEN,
)
MODEL = AutoModelForCausalLM.from_pretrained(
    "HuggingFaceM4/img2html",
    token=API_TOKEN,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
).to(DEVICE)
if MODEL.config.use_resampler:
    image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
else:
    image_seq_len = (
        MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
    ) ** 2
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids


## Utils

def convert_to_rgb(image):
    # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
    # for transparent images. The call to `alpha_composite` handles this case
    if image.mode == "RGB":
        return image

    image_rgba = image.convert("RGBA")
    background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
    alpha_composite = Image.alpha_composite(background, image_rgba)
    alpha_composite = alpha_composite.convert("RGB")
    return alpha_composite

# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
# so this is a hack in order to redefine ONLY the transform method
def custom_transform(x):
    x = convert_to_rgb(x)
    x = to_numpy_array(x)
    x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
    x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
    x = PROCESSOR.image_processor.normalize(
        x,
        mean=PROCESSOR.image_processor.image_mean,
        std=PROCESSOR.image_processor.image_std
    )
    x = to_channel_dimension_format(x, ChannelDimension.FIRST)
    x = torch.tensor(x)
    return x

## End of Utils


IMAGE_GALLERY_PATHS = [
    f"example_images/{ex_image}"
    for ex_image in os.listdir(f"example_images")
]


def install_playwright():
    try:
        subprocess.run(["playwright", "install"], check=True)
        print("Playwright installation successful.")
    except subprocess.CalledProcessError as e:
        print(f"Error during Playwright installation: {e}")

install_playwright()


def add_file_gallery(
    selected_state: gr.SelectData,
    gallery_list: List[str]
):
    return Image.open(gallery_list.root[selected_state.index].image.path)


def render_webpage(
    html_css_code,
):
    with sync_playwright() as p:
        browser = p.chromium.launch(headless=True)
        context = browser.new_context(
            user_agent=(
                "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0"
                " Safari/537.36"
            )
        )
        page = context.new_page()
        page.set_content(html_css_code)
        page.wait_for_load_state("networkidle")
        output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png"
        _ = page.screenshot(path=output_path_screenshot, full_page=True)

        context.close()
        browser.close()

    return Image.open(output_path_screenshot)


def model_inference(
    image,
):
    if image is None:
        raise ValueError("`image` is None. It should be a PIL image.")

    inputs = PROCESSOR.tokenizer(
        f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
        return_tensors="pt",
        add_special_tokens=False,
    )
    inputs["pixel_values"] = PROCESSOR.image_processor(
        [image],
        transform=custom_transform
    )
    inputs = {
        k: v.to(DEVICE)
        for k, v in inputs.items()
    }
    generated_ids = MODEL.generate(
        **inputs,
        bad_words_ids=BAD_WORDS_IDS,
        max_length=4096
    )
    generated_text = PROCESSOR.batch_decode(
        generated_ids,
        skip_special_tokens=True
    )[0]

    rendered_page = render_webpage(generated_text)
    return generated_text, rendered_page


generated_html = gr.Code(
    label="Extracted HTML",
    elem_id="generated_html",
)
rendered_html = gr.Image(
    label="Rendered HTML"
)
# rendered_html = gr.HTML(
#     label="Rendered HTML"
# )


css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""


with gr.Blocks(title="Img2html", theme=gr.themes.Base(), css=css) as demo:
    with gr.Row(equal_height=True):
        with gr.Column(scale=4, min_width=250) as upload_area:
            imagebox = gr.Image(
                type="pil",
                label="Screenshot to extract",
                visible=True,
                sources=["upload", "clipboard"],
            )
            with gr.Group():
                with gr.Row():
                    submit_btn = gr.Button(
                        value="▶️ Submit", visible=True, min_width=120
                    )
                    clear_btn = gr.ClearButton(
                        [imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120
                    )
                    regenerate_btn = gr.Button(
                        value="🔄 Regenerate", visible=True, min_width=120
                    )
        with gr.Column(scale=4) as result_area:
            rendered_html.render()

    with gr.Row():
        generated_html.render()

    with gr.Row():
        template_gallery = gr.Gallery(
            value=IMAGE_GALLERY_PATHS,
            label="Templates Gallery",
            allow_preview=False,
            columns=4,
            elem_id="gallery",
            show_share_button=False,
            height=400,
        )

    gr.on(
        triggers=[
            imagebox.upload,
            submit_btn.click,
            regenerate_btn.click,
        ],
        fn=model_inference,
        inputs=[imagebox],
        outputs=[generated_html, rendered_html],
        queue=False,
    )
    regenerate_btn.click(
        fn=model_inference,
        inputs=[imagebox],
        outputs=[generated_html, rendered_html],
        queue=False,
    )
    template_gallery.select(
        fn=add_file_gallery,
        inputs=[template_gallery],
        outputs=[imagebox],
        queue=False,
    ).success(
        fn=model_inference,
        inputs=[imagebox],
        outputs=[generated_html, rendered_html],
        queue=False,
    )
    demo.load(queue=False)

demo.queue(max_size=40, api_open=False)
demo.launch(max_threads=400)