Spaces:
Runtime error
Runtime error
File size: 1,040 Bytes
3c63390 49ea6d4 116a19e 43e821a 49ea6d4 d7215ca 49ea6d4 3c63390 6257cd7 49ea6d4 43e821a 6257cd7 49ea6d4 6257cd7 49ea6d4 6257cd7 43e821a 6257cd7 49ea6d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
@st.cache(allow_output_mutation=True)
def load_qa_model():
model_name = "google/mobilebert-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
return qa_pipeline
qa = load_qa_model()
st.title("Ask Questions about your Text")
sentence = st.text_area('Please paste your article :', height=30)
question = st.text_input("Questions from this article?")
button = st.button("Get me Answers")
max_seq_length = st.sidebar.slider('Select max sequence length', 50, 500, step=10, value=150)
do_sample = st.sidebar.checkbox("Do sample", value=False)
with st.spinner("Discovering Answers.."):
if button and sentence:
answers = qa(question=question, context=sentence)
st.write("Answer:", answers['answer'])
st.write("Score:", answers['score'])
|