Hackoor commited on
Commit
423cccf
·
1 Parent(s): 5e9668c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -21
app.py CHANGED
@@ -10,14 +10,11 @@ from langchain.memory import ConversationBufferMemory
10
  from langchain.document_loaders import PyPDFLoader
11
  from langchain.document_loaders import TextLoader
12
  from langchain.document_loaders import Docx2txtLoader
13
- from transformers import AutoTokenizer, AutoModelForCausalLM
14
  from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
15
  import os
16
  from dotenv import load_dotenv
17
  import tempfile
18
 
19
- import torch
20
-
21
 
22
  load_dotenv()
23
 
@@ -59,25 +56,18 @@ def display_chat_history(chain):
59
  message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
60
  message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
61
 
62
-
63
-
64
-
65
-
66
-
67
- os.environ['HuggingFaceHub_API_Token']= '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'
68
- tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Hermes-llama-2-7b")
69
  def create_conversational_chain(vector_store):
70
  load_dotenv()
71
  # Create llm
72
- llm = CTransformers(streaming=True,
73
- model = AutoModelForCausalLM.from_pretrained("NousResearch/Nous-Hermes-llama-2-7b", device_map='auto',torch_dtype=torch.float16,load_in_4bit=True),
74
- callbacks=[StreamingStdOutCallbackHandler()],
75
- model_type="llama", config={'max_new_tokens': 500, 'temperature': 0.01})
76
- # llm = Replicate(
77
- # streaming = True,
78
- # model = "NousResearch/Llama-2-7b-hf",
79
- # callbacks=[StreamingStdOutCallbackHandler()],
80
- # input = {"temperature": 0.01, "max_length" :500,"top_p":1})
81
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
82
 
83
  chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
@@ -89,7 +79,7 @@ def main():
89
  load_dotenv()
90
  # Initialize session state
91
  initialize_session_state()
92
- st.title("Multi-Docs ChatBot using llama-2-7b :books:")
93
  # Initialize Streamlit
94
  st.sidebar.title("Document Processing")
95
  uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
@@ -123,7 +113,7 @@ def main():
123
  model_kwargs={'device': 'cpu'})
124
 
125
  # Create vector store
126
- vector_store = FAISS.from_documents(text_chunks,embeddings)
127
 
128
  # Create the chain object
129
  chain = create_conversational_chain(vector_store)
 
10
  from langchain.document_loaders import PyPDFLoader
11
  from langchain.document_loaders import TextLoader
12
  from langchain.document_loaders import Docx2txtLoader
 
13
  from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
14
  import os
15
  from dotenv import load_dotenv
16
  import tempfile
17
 
 
 
18
 
19
  load_dotenv()
20
 
 
56
  message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
57
  message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
58
 
 
 
 
 
 
 
 
59
  def create_conversational_chain(vector_store):
60
  load_dotenv()
61
  # Create llm
62
+ #llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",
63
+ #streaming=True,
64
+ #callbacks=[StreamingStdOutCallbackHandler()],
65
+ #model_type="llama", config={'max_new_tokens': 500, 'temperature': 0.01})
66
+ llm = Replicate(
67
+ streaming = True,
68
+ model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
69
+ callbacks=[StreamingStdOutCallbackHandler()],
70
+ input = {"temperature": 0.01, "max_length" :500,"top_p":1})
71
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
72
 
73
  chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
 
79
  load_dotenv()
80
  # Initialize session state
81
  initialize_session_state()
82
+ st.title("Multi-Docs ChatBot using llama-2-70b :books:")
83
  # Initialize Streamlit
84
  st.sidebar.title("Document Processing")
85
  uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
 
113
  model_kwargs={'device': 'cpu'})
114
 
115
  # Create vector store
116
+ vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
117
 
118
  # Create the chain object
119
  chain = create_conversational_chain(vector_store)