Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,14 +10,11 @@ from langchain.memory import ConversationBufferMemory
|
|
10 |
from langchain.document_loaders import PyPDFLoader
|
11 |
from langchain.document_loaders import TextLoader
|
12 |
from langchain.document_loaders import Docx2txtLoader
|
13 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
14 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
15 |
import os
|
16 |
from dotenv import load_dotenv
|
17 |
import tempfile
|
18 |
|
19 |
-
import torch
|
20 |
-
|
21 |
|
22 |
load_dotenv()
|
23 |
|
@@ -59,25 +56,18 @@ def display_chat_history(chain):
|
|
59 |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
|
60 |
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
os.environ['HuggingFaceHub_API_Token']= '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'
|
68 |
-
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Hermes-llama-2-7b")
|
69 |
def create_conversational_chain(vector_store):
|
70 |
load_dotenv()
|
71 |
# Create llm
|
72 |
-
llm = CTransformers(
|
73 |
-
|
74 |
-
callbacks=[StreamingStdOutCallbackHandler()],
|
75 |
-
model_type="llama", config={'max_new_tokens': 500, 'temperature': 0.01})
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
82 |
|
83 |
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
|
@@ -89,7 +79,7 @@ def main():
|
|
89 |
load_dotenv()
|
90 |
# Initialize session state
|
91 |
initialize_session_state()
|
92 |
-
st.title("Multi-Docs ChatBot using llama-2-
|
93 |
# Initialize Streamlit
|
94 |
st.sidebar.title("Document Processing")
|
95 |
uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
|
@@ -123,7 +113,7 @@ def main():
|
|
123 |
model_kwargs={'device': 'cpu'})
|
124 |
|
125 |
# Create vector store
|
126 |
-
vector_store = FAISS.from_documents(text_chunks,embeddings)
|
127 |
|
128 |
# Create the chain object
|
129 |
chain = create_conversational_chain(vector_store)
|
|
|
10 |
from langchain.document_loaders import PyPDFLoader
|
11 |
from langchain.document_loaders import TextLoader
|
12 |
from langchain.document_loaders import Docx2txtLoader
|
|
|
13 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
14 |
import os
|
15 |
from dotenv import load_dotenv
|
16 |
import tempfile
|
17 |
|
|
|
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
|
|
56 |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
|
57 |
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def create_conversational_chain(vector_store):
|
60 |
load_dotenv()
|
61 |
# Create llm
|
62 |
+
#llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",
|
63 |
+
#streaming=True,
|
64 |
+
#callbacks=[StreamingStdOutCallbackHandler()],
|
65 |
+
#model_type="llama", config={'max_new_tokens': 500, 'temperature': 0.01})
|
66 |
+
llm = Replicate(
|
67 |
+
streaming = True,
|
68 |
+
model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
|
69 |
+
callbacks=[StreamingStdOutCallbackHandler()],
|
70 |
+
input = {"temperature": 0.01, "max_length" :500,"top_p":1})
|
71 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
72 |
|
73 |
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
|
|
|
79 |
load_dotenv()
|
80 |
# Initialize session state
|
81 |
initialize_session_state()
|
82 |
+
st.title("Multi-Docs ChatBot using llama-2-70b :books:")
|
83 |
# Initialize Streamlit
|
84 |
st.sidebar.title("Document Processing")
|
85 |
uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
|
|
|
113 |
model_kwargs={'device': 'cpu'})
|
114 |
|
115 |
# Create vector store
|
116 |
+
vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
|
117 |
|
118 |
# Create the chain object
|
119 |
chain = create_conversational_chain(vector_store)
|