Spaces:
Runtime error
Runtime error
HAITAME LAFRAME
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
2 |
try:
|
3 |
import torch
|
4 |
except ImportError:
|
@@ -6,37 +10,36 @@ except ImportError:
|
|
6 |
subprocess.run([sys.executable, "-m", "pip", "install", "torch"], check=True)
|
7 |
import torch
|
8 |
|
9 |
-
|
10 |
-
from transformers import (
|
11 |
-
AutoModelForCausalLM,
|
12 |
-
AutoTokenizer,
|
13 |
-
TextIteratorStreamer,
|
14 |
-
)
|
15 |
-
import os
|
16 |
-
from threading import Thread
|
17 |
-
import spaces
|
18 |
-
import time
|
19 |
-
import subprocess
|
20 |
-
|
21 |
subprocess.run(
|
22 |
"pip install flash-attn --no-build-isolation",
|
23 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
24 |
shell=True,
|
25 |
)
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
29 |
|
|
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
31 |
"HaitameLaf/Phi3-Game16bit",
|
32 |
-
|
33 |
trust_remote_code=True,
|
34 |
)
|
35 |
-
tok = AutoTokenizer.from_pretrained("HaitameLaf/Phi3-Game16bit",
|
36 |
-
terminators = [
|
37 |
-
tok.eos_token_id,
|
38 |
-
]
|
39 |
|
|
|
40 |
if torch.cuda.is_available():
|
41 |
device = torch.device("cuda")
|
42 |
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
@@ -45,33 +48,24 @@ else:
|
|
45 |
print("Using CPU")
|
46 |
|
47 |
model = model.to(device)
|
48 |
-
# Dispatch Errors
|
49 |
-
|
50 |
|
51 |
-
|
52 |
def chat(message, history, temperature, do_sample, max_tokens):
|
53 |
-
chat = []
|
54 |
-
for item in history
|
55 |
-
chat.append({"role": "user", "content": item[0]})
|
56 |
-
if item[1] is not None:
|
57 |
-
chat.append({"role": "assistant", "content": item[1]})
|
58 |
chat.append({"role": "user", "content": message})
|
59 |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
60 |
model_inputs = tok([messages], return_tensors="pt").to(device)
|
61 |
-
streamer = TextIteratorStreamer(
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
)
|
72 |
-
|
73 |
-
if temperature == 0:
|
74 |
-
generate_kwargs["do_sample"] = False
|
75 |
|
76 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
77 |
t.start()
|
@@ -83,30 +77,22 @@ def chat(message, history, temperature, do_sample, max_tokens):
|
|
83 |
|
84 |
yield partial_text
|
85 |
|
86 |
-
|
87 |
demo = gr.ChatInterface(
|
88 |
fn=chat,
|
89 |
examples=[["Write me a poem about Machine Learning."]],
|
90 |
-
# multimodal=False,
|
91 |
additional_inputs_accordion=gr.Accordion(
|
92 |
label="⚙️ Parameters", open=False, render=False
|
93 |
),
|
94 |
additional_inputs=[
|
95 |
-
gr.Slider(
|
96 |
-
minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False
|
97 |
-
),
|
98 |
gr.Checkbox(label="Sampling", value=True),
|
99 |
-
gr.Slider(
|
100 |
-
minimum=128,
|
101 |
-
maximum=4096,
|
102 |
-
step=1,
|
103 |
-
value=512,
|
104 |
-
label="Max new tokens",
|
105 |
-
render=False,
|
106 |
-
),
|
107 |
],
|
108 |
stop_btn="Stop Generation",
|
109 |
title="Chat With LLMs",
|
110 |
description="Now Running [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)",
|
111 |
)
|
112 |
-
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Vérifiez si torch est installé, sinon installez-le
|
6 |
try:
|
7 |
import torch
|
8 |
except ImportError:
|
|
|
10 |
subprocess.run([sys.executable, "-m", "pip", "install", "torch"], check=True)
|
11 |
import torch
|
12 |
|
13 |
+
# Installer flash-attn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
subprocess.run(
|
15 |
"pip install flash-attn --no-build-isolation",
|
16 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
17 |
shell=True,
|
18 |
)
|
19 |
|
20 |
+
import gradio as gr
|
21 |
+
from transformers import (
|
22 |
+
AutoModelForCausalLM,
|
23 |
+
AutoTokenizer,
|
24 |
+
TextIteratorStreamer,
|
25 |
+
)
|
26 |
+
from threading import Thread
|
27 |
|
28 |
+
# Obtenir le token d'authentification Hugging Face
|
29 |
+
token = os.getenv("HF_TOKEN")
|
30 |
+
if not token:
|
31 |
+
raise ValueError("Le token d'authentification HF_TOKEN n'est pas défini.")
|
32 |
|
33 |
+
# Charger le modèle et le tokenizer
|
34 |
model = AutoModelForCausalLM.from_pretrained(
|
35 |
"HaitameLaf/Phi3-Game16bit",
|
36 |
+
use_auth_token=token,
|
37 |
trust_remote_code=True,
|
38 |
)
|
39 |
+
tok = AutoTokenizer.from_pretrained("HaitameLaf/Phi3-Game16bit", use_auth_token=token)
|
40 |
+
terminators = [tok.eos_token_id]
|
|
|
|
|
41 |
|
42 |
+
# Vérifier la disponibilité du GPU
|
43 |
if torch.cuda.is_available():
|
44 |
device = torch.device("cuda")
|
45 |
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
|
|
48 |
print("Using CPU")
|
49 |
|
50 |
model = model.to(device)
|
|
|
|
|
51 |
|
52 |
+
# Fonction de chat
|
53 |
def chat(message, history, temperature, do_sample, max_tokens):
|
54 |
+
chat = [{"role": "user", "content": item[0]} for item in history]
|
55 |
+
chat.extend({"role": "assistant", "content": item[1]} for item in history if item[1])
|
|
|
|
|
|
|
56 |
chat.append({"role": "user", "content": message})
|
57 |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
58 |
model_inputs = tok([messages], return_tensors="pt").to(device)
|
59 |
+
streamer = TextIteratorStreamer(tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
60 |
+
|
61 |
+
generate_kwargs = {
|
62 |
+
"input_ids": model_inputs.input_ids,
|
63 |
+
"streamer": streamer,
|
64 |
+
"max_new_tokens": max_tokens,
|
65 |
+
"do_sample": do_sample,
|
66 |
+
"temperature": temperature,
|
67 |
+
"eos_token_id": terminators,
|
68 |
+
}
|
|
|
|
|
|
|
|
|
69 |
|
70 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
71 |
t.start()
|
|
|
77 |
|
78 |
yield partial_text
|
79 |
|
80 |
+
# Configuration de Gradio
|
81 |
demo = gr.ChatInterface(
|
82 |
fn=chat,
|
83 |
examples=[["Write me a poem about Machine Learning."]],
|
|
|
84 |
additional_inputs_accordion=gr.Accordion(
|
85 |
label="⚙️ Parameters", open=False, render=False
|
86 |
),
|
87 |
additional_inputs=[
|
88 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature"),
|
|
|
|
|
89 |
gr.Checkbox(label="Sampling", value=True),
|
90 |
+
gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
],
|
92 |
stop_btn="Stop Generation",
|
93 |
title="Chat With LLMs",
|
94 |
description="Now Running [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)",
|
95 |
)
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
demo.launch()
|