Spaces:
Running
Running
美化UI界面:添加新布局和样式
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import numpy as np
|
|
6 |
from fastapi import FastAPI, File, UploadFile
|
7 |
from PIL import Image
|
8 |
import io
|
9 |
-
import os
|
10 |
|
11 |
# 初始化 FastAPI
|
12 |
app = FastAPI()
|
@@ -16,69 +15,28 @@ model = YOLO("NailongKiller.yolo11n.pt")
|
|
16 |
|
17 |
def detect_objects(image):
|
18 |
if image is None:
|
19 |
-
return None
|
20 |
|
21 |
try:
|
22 |
-
# 运行推理
|
23 |
results = model(image)
|
24 |
result = results[0]
|
25 |
-
|
26 |
-
# 在图像上绘制检测框
|
27 |
annotated_image = result.plot()
|
28 |
-
|
29 |
-
|
30 |
-
# 获取检测结果统计
|
31 |
-
num_detections = len(result.boxes)
|
32 |
-
detection_info = f"检测到 {num_detections} 个目标"
|
33 |
-
|
34 |
-
return annotated_image, detection_info
|
35 |
except Exception as e:
|
36 |
-
return None
|
37 |
|
38 |
-
# 创建Gradio界面
|
39 |
demo = gr.Interface(
|
40 |
fn=detect_objects,
|
41 |
-
inputs=gr.Image(type="numpy"
|
42 |
-
outputs=
|
43 |
-
|
44 |
-
|
45 |
-
],
|
46 |
-
title="🐉 奶龙杀手 (NailongKiller)",
|
47 |
-
description="""
|
48 |
-
这是一个基于 YOLO 的奶龙检测系统。上传图片即可自动检测图中的奶龙。
|
49 |
-
|
50 |
-
This is a YOLO-based Nailong detection system. Upload an image to detect Nailong automatically.
|
51 |
-
""",
|
52 |
-
theme=gr.themes.Default(),
|
53 |
-
allow_flagging="never",
|
54 |
-
examples=["example1.jpg", "example2.jpg"] if all(os.path.exists(f) for f in ["example1.jpg", "example2.jpg"]) else None
|
55 |
)
|
56 |
|
57 |
-
#
|
58 |
-
@app.post("/detect/")
|
59 |
-
async def detect_api(file: UploadFile = File(...)):
|
60 |
-
contents = await file.read()
|
61 |
-
image = Image.open(io.BytesIO(contents))
|
62 |
-
image_np = np.array(image)
|
63 |
-
|
64 |
-
results = model(image_np)
|
65 |
-
result = results[0]
|
66 |
-
|
67 |
-
detections = []
|
68 |
-
for box in result.boxes:
|
69 |
-
detection = {
|
70 |
-
"bbox": box.xyxy[0].tolist(),
|
71 |
-
"confidence": float(box.conf[0]),
|
72 |
-
"class": int(box.cls[0])
|
73 |
-
}
|
74 |
-
detections.append(detection)
|
75 |
-
|
76 |
-
return {"detections": detections}
|
77 |
-
|
78 |
-
# 将Gradio接口挂载到FastAPI
|
79 |
app = gr.mount_gradio_app(app, demo, path="/")
|
80 |
|
81 |
-
# 启动应用
|
82 |
if __name__ == "__main__":
|
83 |
import uvicorn
|
84 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
6 |
from fastapi import FastAPI, File, UploadFile
|
7 |
from PIL import Image
|
8 |
import io
|
|
|
9 |
|
10 |
# 初始化 FastAPI
|
11 |
app = FastAPI()
|
|
|
15 |
|
16 |
def detect_objects(image):
|
17 |
if image is None:
|
18 |
+
return None
|
19 |
|
20 |
try:
|
|
|
21 |
results = model(image)
|
22 |
result = results[0]
|
|
|
|
|
23 |
annotated_image = result.plot()
|
24 |
+
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
except Exception as e:
|
26 |
+
return None
|
27 |
|
28 |
+
# 创建 Gradio 界面
|
29 |
demo = gr.Interface(
|
30 |
fn=detect_objects,
|
31 |
+
inputs=gr.Image(type="numpy"),
|
32 |
+
outputs=gr.Image(),
|
33 |
+
title="奶龙杀手 (Nailong Killer)",
|
34 |
+
description="上传图片来检测奶龙 | Upload an image to detect Nailong"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
|
37 |
+
# 将 Gradio 接口挂载到 FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
app = gr.mount_gradio_app(app, demo, path="/")
|
39 |
|
|
|
40 |
if __name__ == "__main__":
|
41 |
import uvicorn
|
42 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|