Hal-90000 commited on
Commit
b7ba0dc
1 Parent(s): d86a969

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -25
app.py CHANGED
@@ -1,27 +1,83 @@
1
  import gradio as gr
 
 
2
  import torch
3
- from diffusers import StableDiffusionPipeline
4
-
5
- # Cargar el modelo de Stable Diffusion desde Hugging Face
6
- model_id = "CompVis/stable-diffusion-v1-4"
7
- pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
8
- pipe.to("cuda") # Cambiar a CPU si no hay GPU disponible
9
-
10
- # Función para generar la imagen
11
- def generar_imagen(texto):
12
- with torch.autocast("cuda"):
13
- image = pipe(texto, guidance_scale=7.5).images[0]
14
- return image
15
-
16
- # Interfaz de Gradio
17
- interfaz = gr.Interface(
18
- fn=generar_imagen,
19
- inputs="text",
20
- outputs="image",
21
- title="Generador de Imágenes con Stable Diffusion",
22
- description="Escribe una descripción y genera una imagen usando Stable Diffusion."
23
- )
24
-
25
- # Ejecuta la aplicación
26
- if __name__ == "__main__":
27
- interfaz.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import numpy as np
3
+ import random
4
  import torch
5
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
6
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
7
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
8
+
9
+ dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+
12
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
13
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
14
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
15
+ torch.cuda.empty_cache()
16
+
17
+ MAX_SEED = np.iinfo(np.int32).max
18
+ MAX_IMAGE_SIZE = 2048
19
+
20
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
21
+
22
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
23
+ if randomize_seed:
24
+ seed = random.randint(0, MAX_SEED)
25
+ generator = torch.Generator().manual_seed(seed)
26
+
27
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
28
+ prompt=prompt,
29
+ guidance_scale=guidance_scale,
30
+ num_inference_steps=num_inference_steps,
31
+ width=width,
32
+ height=height,
33
+ generator=generator,
34
+ output_type="pil",
35
+ good_vae=good_vae,
36
+ ):
37
+ yield img, seed
38
+
39
+ examples = [
40
+ "a tiny astronaut hatching from an egg on the moon",
41
+ "a cat holding a sign that says hello world",
42
+ "an anime illustration of a wiener schnitzel",
43
+ ]
44
+
45
+ css = """
46
+ #col-container {
47
+ margin: 0 auto;
48
+ max-width: 520px;
49
+ }
50
+ """
51
+
52
+ with gr.Blocks(css=css) as demo:
53
+ with gr.Column(elem_id="col-container"):
54
+ gr.Markdown("""# FLUX.1 [dev]
55
+ 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
56
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
57
+ """)
58
+
59
+ with gr.Row():
60
+ prompt = gr.Textbox(
61
+ label="Prompt",
62
+ show_label=False,
63
+ max_lines=1,
64
+ placeholder="Enter your prompt",
65
+ container=False,
66
+ )
67
+ run_button = gr.Button("Run", scale=0)
68
+
69
+ result = gr.Image(label="Result", show_label=False)
70
+
71
+ with gr.Accordion("Advanced Settings", open=False):
72
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
73
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
74
+
75
+ with gr.Row():
76
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
77
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
78
+
79
+ with gr.Row():
80
+ guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
81
+ num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
82
+
83
+ gr.Examples(examples=examples, inputs=[prompt], outputs=[