Spaces:
Running
Running
from typing import List, Optional, Tuple, Union | |
import torch | |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
def _prepare_4d_causal_attention_mask( | |
attention_mask: Optional[torch.Tensor], | |
input_shape: Union[torch.Size, Tuple, List], | |
inputs_embeds: torch.Tensor, | |
past_key_values_length: int, | |
sliding_window: Optional[int] = None, | |
): | |
""" | |
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)` | |
Args: | |
attention_mask (`torch.Tensor` or `None`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` | |
input_shape (`tuple(int)` or `list(int)` or `torch.Size`): | |
The input shape should be a tuple that defines `(batch_size, query_length)`. | |
inputs_embeds (`torch.Tensor`): | |
The embedded inputs as a torch Tensor. | |
past_key_values_length (`int`): | |
The length of the key value cache. | |
sliding_window (`int`, *optional*): | |
If the model uses windowed attention, a sliding window should be passed. | |
""" | |
attn_mask_converter = AttentionMaskConverter( | |
is_causal=False, sliding_window=sliding_window | |
) # is_causal=True in original implementation | |
key_value_length = input_shape[-1] + past_key_values_length | |
# 4d mask is passed through the layers | |
if attention_mask is not None and len(attention_mask.shape) == 2: | |
attention_mask = attn_mask_converter.to_4d( | |
attention_mask, | |
input_shape[-1], | |
key_value_length=key_value_length, | |
dtype=inputs_embeds.dtype, | |
) | |
elif attention_mask is not None and len(attention_mask.shape) == 4: | |
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) | |
if tuple(attention_mask.shape) != expected_shape: | |
raise ValueError( | |
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." | |
) | |
else: | |
# if the 4D mask has correct shape - invert it and fill with negative infinity | |
inverted_mask = 1.0 - attention_mask | |
attention_mask = inverted_mask.masked_fill( | |
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min | |
) | |
else: | |
attention_mask = attn_mask_converter.to_causal_4d( | |
input_shape[0], | |
input_shape[-1], | |
key_value_length, | |
dtype=inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
) | |
return attention_mask | |
# Adapted from _prepare_4d_causal_attention_mask | |
def _prepare_4d_causal_attention_mask_for_sdpa( | |
attention_mask: Optional[torch.Tensor], | |
input_shape: Union[torch.Size, Tuple, List], | |
inputs_embeds: torch.Tensor, | |
past_key_values_length: int, | |
sliding_window: Optional[int] = None, | |
): | |
""" | |
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`. | |
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and | |
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks, | |
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed). | |
""" | |
attn_mask_converter = AttentionMaskConverter( | |
is_causal=False, sliding_window=sliding_window | |
) # is_causal=True in original implementation | |
key_value_length = input_shape[-1] + past_key_values_length | |
batch_size, query_length = input_shape | |
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1` | |
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing. | |
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400). | |
is_tracing = ( | |
torch.jit.is_tracing() | |
or isinstance(inputs_embeds, torch.fx.Proxy) | |
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) | |
) | |
if attention_mask is not None: | |
# 4d mask is passed through | |
if len(attention_mask.shape) == 4: | |
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) | |
if tuple(attention_mask.shape) != expected_shape: | |
raise ValueError( | |
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." | |
) | |
else: | |
# if the 4D mask has correct shape - invert it and fill with negative infinity | |
inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype) | |
attention_mask = inverted_mask.masked_fill( | |
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min | |
) | |
return attention_mask | |
elif not is_tracing and torch.all(attention_mask == 1): | |
if query_length == 1: | |
# For query_length == 1, causal attention and bi-directional attention are the same. | |
attention_mask = None | |
elif key_value_length == query_length: | |
attention_mask = None | |
else: | |
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation | |
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here. | |
# Reference: https://github.com/pytorch/pytorch/issues/108108 | |
pass | |
elif query_length > 1 and key_value_length != query_length: | |
# See the comment above (https://github.com/pytorch/pytorch/issues/108108). | |
# Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`. | |
attention_mask = True | |
elif is_tracing: | |
raise ValueError( | |
'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.' | |
) | |
if attention_mask is None: | |
expanded_4d_mask = None | |
elif attention_mask is True: | |
expanded_4d_mask = attn_mask_converter.to_causal_4d( | |
input_shape[0], | |
input_shape[-1], | |
key_value_length, | |
dtype=inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
) | |
else: | |
expanded_4d_mask = attn_mask_converter.to_4d( | |
attention_mask, | |
input_shape[-1], | |
dtype=inputs_embeds.dtype, | |
key_value_length=key_value_length, | |
) | |
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
if not is_tracing and expanded_4d_mask.device.type == "cuda": | |
expanded_4d_mask = AttentionMaskConverter._unmask_unattended( | |
expanded_4d_mask, min_dtype=torch.finfo(inputs_embeds.dtype).min | |
) | |
return expanded_4d_mask | |