Spaces:
Running
Running
from typing import List, Optional, Tuple, Union | |
import torch | |
from transformers import ( | |
MistralModel, | |
MistralPreTrainedModel, | |
MistralForCausalLM, | |
MistralConfig, | |
) | |
from transformers.modeling_outputs import BaseModelOutputWithPast | |
from transformers.cache_utils import Cache, DynamicCache | |
from transformers.models.mistral.modeling_mistral import ( | |
MistralDecoderLayer, | |
MistralRMSNorm, | |
MistralAttention, | |
MistralFlashAttention2, | |
MistralSdpaAttention, | |
MistralMLP, | |
) | |
from torch import nn | |
from transformers.utils import logging | |
from attn_mask_utils import ( | |
_prepare_4d_causal_attention_mask, | |
_prepare_4d_causal_attention_mask_for_sdpa, | |
) | |
logger = logging.get_logger(__name__) | |
class ModifiedMistralAttention(MistralAttention): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.is_causal = False | |
class ModifiedMistralFlashAttention2(MistralFlashAttention2): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.is_causal = False | |
class ModifiedMistralSdpaAttention(MistralSdpaAttention): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.is_causal = False | |
MISTRAL_ATTENTION_CLASSES = { | |
"eager": ModifiedMistralAttention, | |
"flash_attention_2": ModifiedMistralFlashAttention2, | |
"sdpa": ModifiedMistralSdpaAttention, | |
} | |
class ModifiedMistralDecoderLayer(MistralDecoderLayer): | |
def __init__(self, config: MistralConfig, layer_idx: int): | |
nn.Module.__init__(self) | |
self.hidden_size = config.hidden_size | |
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation]( | |
config, layer_idx | |
) | |
self.mlp = MistralMLP(config) | |
self.input_layernorm = MistralRMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps | |
) | |
self.post_attention_layernorm = MistralRMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps | |
) | |
class MistralBiModel(MistralModel): | |
def __init__(self, config: MistralConfig): | |
MistralPreTrainedModel.__init__(self, config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding( | |
config.vocab_size, config.hidden_size, self.padding_idx | |
) | |
self.layers = nn.ModuleList( | |
[ | |
ModifiedMistralDecoderLayer(config, layer_idx) | |
for layer_idx in range(config.num_hidden_layers) | |
] | |
) | |
self._attn_implementation = config._attn_implementation | |
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from forward() in transformers.models.mistral.modeling_mistral.MistralModel | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError( | |
"You have to specify either decoder_input_ids or decoder_inputs_embeds" | |
) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
past_key_values_length = 0 | |
if use_cache: | |
use_legacy_cache = not isinstance(past_key_values, Cache) | |
if use_legacy_cache: | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
past_key_values_length = past_key_values.get_usable_length(seq_length) | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, | |
seq_length + past_key_values_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
if ( | |
attention_mask is not None | |
and self._attn_implementation == "flash_attention_2" | |
and use_cache | |
): | |
is_padding_right = attention_mask[:, -1].sum().item() != batch_size | |
if is_padding_right: | |
raise ValueError( | |
"You are attempting to perform batched generation with padding_side='right'" | |
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " | |
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " | |
) | |
if self._attn_implementation == "flash_attention_2": | |
# 2d mask is passed through the layers | |
attention_mask = ( | |
attention_mask | |
if (attention_mask is not None and 0 in attention_mask) | |
else None | |
) | |
elif self._attn_implementation == "sdpa" and not output_attentions: | |
# The original implementation is by-passed, see attn_mask_utils.py | |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
) | |
else: | |
# 4d mask is passed through the layers | |
attention_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
sliding_window=self.config.sliding_window, | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = None | |
if use_cache: | |
next_cache = ( | |
next_decoder_cache.to_legacy_cache() | |
if use_legacy_cache | |
else next_decoder_cache | |
) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | |
if v is not None | |
) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class MistralBiForMNTP(MistralForCausalLM): | |
def __init__(self, config): | |
MistralPreTrainedModel.__init__(self, config) | |
self.model = MistralBiModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |