File size: 118,929 Bytes
50f0fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
# coding=utf-8
# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Longformer model. """

import math
from dataclasses import dataclass
from typing import Optional, Tuple
from numpy.lib.function_base import kaiser

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN, gelu
from transformers.file_utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from transformers.modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
from transformers.utils import logging
from transformers import LongformerConfig

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096"
_CONFIG_FOR_DOC = "LongformerConfig"
_TOKENIZER_FOR_DOC = "LongformerTokenizer"

LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "allenai/longformer-base-4096",
    "allenai/longformer-large-4096",
    "allenai/longformer-large-4096-finetuned-triviaqa",
    "allenai/longformer-base-4096-extra.pos.embd.only",
    "allenai/longformer-large-4096-extra.pos.embd.only",
    # See all Longformer models at https://huggingface.co/models?filter=longformer
]


@dataclass
class LongformerBaseModelOutput(ModelOutput):
    """
    Base class for Longformer's outputs, with potential hidden states, local and global attentions.

    Args:
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention
            mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first ``x`` values) and to every token in the attention window (remaining
            ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in
            the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the
            attention weight of a token to itself is located at index ``x + attention_window / 2`` and the
            ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window
            / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the
            attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x``
            attention weights. If a token has global attention, the attention weights to all other tokens in
            :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`.
        global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x)`, where ``x`` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    last_hidden_state: torch.FloatTensor
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    global_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class LongformerBaseModelOutputWithPooling(ModelOutput):
    """
    Base class for Longformer's outputs that also contains a pooling of the last hidden states.

    Args:
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification token) further processed by a
            Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence
            prediction (classification) objective during pretraining.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention
            mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first ``x`` values) and to every token in the attention window (remaining
            ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in
            the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the
            attention weight of a token to itself is located at index ``x + attention_window / 2`` and the
            ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window
            / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the
            attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x``
            attention weights. If a token has global attention, the attention weights to all other tokens in
            :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`.
        global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x)`, where ``x`` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    last_hidden_state: torch.FloatTensor
    pooler_output: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    global_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class LongformerMaskedLMOutput(ModelOutput):
    """
    Base class for masked language models outputs.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Masked language modeling (MLM) loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention
            mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first ``x`` values) and to every token in the attention window (remaining
            ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in
            the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the
            attention weight of a token to itself is located at index ``x + attention_window / 2`` and the
            ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window
            / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the
            attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x``
            attention weights. If a token has global attention, the attention weights to all other tokens in
            :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`.
        global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x)`, where ``x`` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    global_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class LongformerQuestionAnsweringModelOutput(ModelOutput):
    """
    Base class for outputs of question answering Longformer models.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
            Span-start scores (before SoftMax).
        end_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
            Span-end scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention
            mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first ``x`` values) and to every token in the attention window (remaining
            ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in
            the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the
            attention weight of a token to itself is located at index ``x + attention_window / 2`` and the
            ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window
            / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the
            attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x``
            attention weights. If a token has global attention, the attention weights to all other tokens in
            :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`.
        global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x)`, where ``x`` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    loss: Optional[torch.FloatTensor] = None
    start_logits: torch.FloatTensor = None
    end_logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    global_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class LongformerSequenceClassifierOutput(ModelOutput):
    """
    Base class for outputs of sentence classification models.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention
            mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first ``x`` values) and to every token in the attention window (remaining
            ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in
            the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the
            attention weight of a token to itself is located at index ``x + attention_window / 2`` and the
            ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window
            / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the
            attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x``
            attention weights. If a token has global attention, the attention weights to all other tokens in
            :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`.
        global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x)`, where ``x`` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    global_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class LongformerMultipleChoiceModelOutput(ModelOutput):
    """
    Base class for outputs of multiple choice Longformer models.

    Args:
        loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
            Classification loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
            `num_choices` is the second dimension of the input tensors. (see `input_ids` above).

            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention
            mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first ``x`` values) and to every token in the attention window (remaining
            ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in
            the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the
            attention weight of a token to itself is located at index ``x + attention_window / 2`` and the
            ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window
            / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the
            attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x``
            attention weights. If a token has global attention, the attention weights to all other tokens in
            :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`.
        global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x)`, where ``x`` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    global_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class LongformerTokenClassifierOutput(ModelOutput):
    """
    Base class for outputs of token classification models.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
            Classification loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention
            mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first ``x`` values) and to every token in the attention window (remaining
            ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in
            the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the
            attention weight of a token to itself is located at index ``x + attention_window / 2`` and the
            ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window
            / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the
            attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x``
            attention weights. If a token has global attention, the attention weights to all other tokens in
            :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`.
        global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, x)`, where ``x`` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    global_attentions: Optional[Tuple[torch.FloatTensor]] = None


def _get_question_end_index(input_ids, sep_token_id):
    """
    Computes the index of the first occurrence of `sep_token_id`.
    """

    sep_token_indices = (input_ids == sep_token_id).nonzero()
    batch_size = input_ids.shape[0]

    assert sep_token_indices.shape[1] == 2, "`input_ids` should have two dimensions"
    assert (
        sep_token_indices.shape[0] == 3 * batch_size
    ), f"There should be exactly three separator tokens: {sep_token_id} in every sample for questions answering. You might also consider to set `global_attention_mask` manually in the forward function to avoid this error."
    return sep_token_indices.view(batch_size, 3, 2)[:, 0, 1]


def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=True):
    """
    Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is
    True` else after `sep_token_id`.
    """
    question_end_index = _get_question_end_index(input_ids, sep_token_id)
    question_end_index = question_end_index.unsqueeze(
        dim=1)  # size: batch_size x 1
    # bool attention mask with True in locations of global attention
    attention_mask = torch.arange(input_ids.shape[1], device=input_ids.device)
    if before_sep_token is True:
        attention_mask = (attention_mask.expand_as(input_ids)
                          < question_end_index).to(torch.uint8)
    else:
        # last token is separation token and should not be counted and in the middle are two separation tokens
        attention_mask = (attention_mask.expand_as(input_ids) > (question_end_index + 1)).to(torch.uint8) * (
            attention_mask.expand_as(input_ids) < input_ids.shape[-1]
        ).to(torch.uint8)

    return attention_mask


def create_position_ids_from_input_ids(input_ids, padding_idx):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.

    Args:
        x: torch.Tensor x:

    Returns: torch.Tensor
    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
    return incremental_indices.long() + padding_idx


class LongformerEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(
            config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(
            config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized

        # Modify
        # self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
        # self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")

        # self.padding_idx = config.pad_token_id
        # self.position_embeddings = nn.Embedding(
        #     config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
        # )

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):

        # if position_ids is None:
        #     if input_ids is not None:
        #         # Create the position ids from the input token ids. Any padded tokens remain padded.
        #         position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device)
        #     else:
        #         position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        # if position_ids is None:
        #     position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = torch.zeros(
                input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        # Modify
        # position_embeddings = self.position_embeddings(position_ids)

        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

        Args:
            inputs_embeds: torch.Tensor inputs_embeds:

        Returns: torch.Tensor
        """
        input_shape = inputs_embeds.size()[:-1]
        sequence_length = input_shape[1]

        position_ids = torch.arange(
            self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
        )
        return position_ids.unsqueeze(0).expand(input_shape)


class RoPEmbedding(nn.Module):
    def __init__(self, d_model):
        super(RoPEmbedding, self).__init__()
        self.d_model = d_model
        div_term = torch.exp(torch.arange(
            0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        self.register_buffer('div_term', div_term)

    def forward(self, x, seq_dim=0):
        x = x  # [seq_len,num_head,batch_size,per_head_hidden_size]
        t = torch.arange(x.size(seq_dim), device=x.device).type_as(
            self.div_term)
        sinusoid_inp = torch.outer(t, self.div_term)
        sin, cos = sinusoid_inp.sin(), sinusoid_inp.cos()  # [s, hn]
        o_shape = (sin.size(0), 1, 1, sin.size(1))
        sin, cos = sin.view(*o_shape), cos.view(*o_shape)  # [s, 1, 1, hn]
        sin = torch.repeat_interleave(sin, 2, dim=-1)
        cos = torch.repeat_interleave(cos, 2, dim=-1)
        x2 = torch.stack([-x[..., 1::2], x[..., ::2]], dim=-1).reshape_as(x)
        x = cos * x + sin * x2
        return x


class LongformerSelfAttention(nn.Module):
    def __init__(self, config, layer_id):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )
        self.config = config
        self.num_heads = config.num_attention_heads
        self.head_dim = int(config.hidden_size / config.num_attention_heads)
        self.embed_dim = config.hidden_size

        self.query = nn.Linear(config.hidden_size, self.embed_dim)
        self.key = nn.Linear(config.hidden_size, self.embed_dim)
        self.value = nn.Linear(config.hidden_size, self.embed_dim)

        # separate projection layers for tokens with global attention
        # self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
        # self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
        # self.value_global = nn.Linear(config.hidden_size, self.embed_dim)

        self.dropout = config.attention_probs_dropout_prob

        self.layer_id = layer_id
        attention_window = config.attention_window[self.layer_id]
        assert (
            attention_window % 2 == 0
        ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
        assert (
            attention_window > 0
        ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"

        self.one_sided_attn_window_size = attention_window // 2
        self.rope_emb = RoPEmbedding(self.head_dim)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_head_mask=None,
        is_index_masked=None,
        is_index_global_attn=None,
        is_global_attn=None,
        output_attentions=False,
    ):
        """
        :class:`LongformerSelfAttention` expects `len(hidden_states)` to be multiple of `attention_window`. Padding to
        `attention_window` happens in :meth:`LongformerModel.forward` to avoid redoing the padding on each layer.

        The `attention_mask` is changed in :meth:`LongformerModel.forward` from 0, 1, 2 to:

            * -10000: no attention
            * 0: local attention
            * +10000: global attention
        """

        # print(attention_mask.shape)
        if not self.config.use_sparse_attention:  # 如果不使用稀疏attention,则使用标准的attention
            hidden_states = hidden_states.transpose(0, 1)
            # project hidden states
            query_vectors = self.query(hidden_states)
            key_vectors = self.key(hidden_states)
            value_vectors = self.value(hidden_states)

            seq_len, batch_size, embed_dim = hidden_states.size()
            assert (
                embed_dim == self.embed_dim
            ), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"

            # normalize query

            # query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
            # key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)

            # print('query_vectors',query_vectors.shape)

            query_vectors = query_vectors.view(
                seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2)
            key_vectors = key_vectors.view(
                seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2)

            query_vectors = self.rope_emb(query_vectors)
            key_vectors = self.rope_emb(key_vectors)

            query_vectors = query_vectors.transpose(0, 2)  # [b,mh,s,hd]
            key_vectors = key_vectors.transpose(0, 2).transpose(2, 3)

            # print('query_vectors',query_vectors.shape)

            query_vectors /= math.sqrt(self.head_dim)

            attention_mask = self.get_extended_attention_mask(
                attention_mask, attention_mask.shape, attention_mask.device)
            attn_scores = torch.matmul(
                query_vectors, key_vectors)+attention_mask

            attn_scores = torch.nn.functional.softmax(attn_scores, dim=-1)

            value_vectors = value_vectors.view(
                seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1).transpose(1, 2)
            outputs = torch.matmul(attn_scores, value_vectors).transpose(
                1, 2).contiguous().view(batch_size, seq_len, self.num_heads*self.head_dim)

            # print('output',outputs.shape)
            outputs = (outputs,)
            return outputs+(attn_scores,)

        # print('hidden.shape',hidden_states.shape)
        # print('attention_mask.shape',attention_mask.shape)
        # print('att_mask:',attention_mask)

        hidden_states = hidden_states.transpose(0, 1)

        # project hidden states
        query_vectors = self.query(hidden_states)
        key_vectors = self.key(hidden_states)
        value_vectors = self.value(hidden_states)

        seq_len, batch_size, embed_dim = hidden_states.size()
        assert (
            embed_dim == self.embed_dim
        ), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"

        # normalize query

        # query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
        # key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)

        query_vectors = query_vectors.view(
            seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2)
        key_vectors = key_vectors.view(
            seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2)

        query_vectors = self.rope_emb(query_vectors)
        key_vectors = self.rope_emb(key_vectors)

        query_vectors = query_vectors.transpose(1, 2).transpose(0, 1)
        key_vectors = key_vectors.transpose(1, 2).transpose(0, 1)

        query_vectors /= math.sqrt(self.head_dim)

        attn_scores = self._sliding_chunks_query_key_matmul(
            query_vectors, key_vectors, self.one_sided_attn_window_size
        )
        # print('att:',attn_scores.shape)
        # values to pad for attention probs
        remove_from_windowed_attention_mask = (
            attention_mask != 0)[:, :, None, None]

        # cast to fp32/fp16 then replace 1's with -inf
        float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill(
            remove_from_windowed_attention_mask, -10000.0
        )
        # diagonal mask with zeros everywhere and -inf inplace of padding
        diagonal_mask = self._sliding_chunks_query_key_matmul(
            float_mask.new_ones(size=float_mask.size()
                                ), float_mask, self.one_sided_attn_window_size
        )

        # pad local attention probs
        attn_scores += diagonal_mask

        assert list(attn_scores.size()) == [
            batch_size,
            seq_len,
            self.num_heads,
            self.one_sided_attn_window_size * 2 + 1,
        ], f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}"

        # compute local attention probs from global attention keys and contact over window dim
        if is_global_attn:
            # compute global attn indices required through out forward fn
            (
                max_num_global_attn_indices,
                is_index_global_attn_nonzero,
                is_local_index_global_attn_nonzero,
                is_local_index_no_global_attn_nonzero,
            ) = self._get_global_attn_indices(is_index_global_attn)
            # calculate global attn probs from global key

            global_key_attn_scores = self._concat_with_global_key_attn_probs(
                query_vectors=query_vectors,
                key_vectors=key_vectors,
                max_num_global_attn_indices=max_num_global_attn_indices,
                is_index_global_attn_nonzero=is_index_global_attn_nonzero,
                is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
                is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
            )
            # concat to local_attn_probs
            # (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
            attn_scores = torch.cat(
                (global_key_attn_scores, attn_scores), dim=-1)

            # free memory
            del global_key_attn_scores

        attn_probs = nn.functional.softmax(
            attn_scores, dim=-1, dtype=torch.float32
        )  # use fp32 for numerical stability

        if layer_head_mask is not None:
            assert layer_head_mask.size() == (
                self.num_heads,
            ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
            attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs

        # softmax sometimes inserts NaN if all positions are masked, replace them with 0
        attn_probs = torch.masked_fill(
            attn_probs, is_index_masked[:, :, None, None], 0.0)
        attn_probs = attn_probs.type_as(attn_scores)

        # free memory
        del attn_scores

        # apply dropout
        attn_probs = nn.functional.dropout(
            attn_probs, p=self.dropout, training=self.training)

        value_vectors = value_vectors.view(
            seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)

        # compute local attention output with global attention value and add
        if is_global_attn:
            # compute sum of global and local attn
            attn_output = self._compute_attn_output_with_global_indices(
                value_vectors=value_vectors,
                attn_probs=attn_probs,
                max_num_global_attn_indices=max_num_global_attn_indices,
                is_index_global_attn_nonzero=is_index_global_attn_nonzero,
                is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
            )
        else:
            # compute local attn only
            attn_output = self._sliding_chunks_matmul_attn_probs_value(
                attn_probs, value_vectors, self.one_sided_attn_window_size
            )

        assert attn_output.size() == (batch_size, seq_len, self.num_heads,
                                      self.head_dim), "Unexpected size"
        attn_output = attn_output.transpose(0, 1).reshape(
            seq_len, batch_size, embed_dim).contiguous()

        # compute value for global attention and overwrite to attention output
        # TODO: remove the redundant computation
        if is_global_attn:
            global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden(
                global_query_vectors=query_vectors,
                global_key_vectors=key_vectors,
                global_value_vectors=value_vectors,
                max_num_global_attn_indices=max_num_global_attn_indices,
                layer_head_mask=layer_head_mask,
                is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
                is_index_global_attn_nonzero=is_index_global_attn_nonzero,
                is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
                is_index_masked=is_index_masked,
            )
            # print('global_attn_output',global_attn_output.shape)
            # get only non zero global attn output
            nonzero_global_attn_output = global_attn_output[
                is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1]
            ]
            # print('nonzero_global_attn_output',nonzero_global_attn_output.shape)
            # overwrite values with global attention
            attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view(
                len(is_local_index_global_attn_nonzero[0]), -1
            )
            # The attention weights for tokens with global attention are
            # just filler values, they were never used to compute the output.
            # Fill with 0 now, the correct values are in 'global_attn_probs'.
            attn_probs[is_index_global_attn_nonzero] = 0

        outputs = (attn_output.transpose(0, 1),)

        if output_attentions:
            outputs += (attn_probs,)

        return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs

    @staticmethod
    def _pad_and_transpose_last_two_dims(hidden_states_padded, padding):
        """pads rows and then flips rows and columns"""
        hidden_states_padded = nn.functional.pad(
            hidden_states_padded, padding
        )  # padding value is not important because it will be overwritten
        hidden_states_padded = hidden_states_padded.view(
            *hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2)
        )
        return hidden_states_padded

    @staticmethod
    def _pad_and_diagonalize(chunked_hidden_states):
        """
        shift every row 1 step right, converting columns into diagonals.

        Example::

              chunked_hidden_states: [ 0.4983,  2.6918, -0.0071,  1.0492,
                                       -1.8348,  0.7672,  0.2986,  0.0285,
                                       -0.7584,  0.4206, -0.0405,  0.1599,
                                       2.0514, -1.1600,  0.5372,  0.2629 ]
              window_overlap = num_rows = 4
             (pad & diagonalize) =>
             [ 0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000
               0.0000,  -1.8348,  0.7672,  0.2986,  0.0285, 0.0000,  0.0000
               0.0000,  0.0000, -0.7584,  0.4206, -0.0405,  0.1599, 0.0000
               0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629 ]
        """
        total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size()
        chunked_hidden_states = nn.functional.pad(
            chunked_hidden_states, (0, window_overlap + 1)
        )  # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten
        chunked_hidden_states = chunked_hidden_states.view(
            total_num_heads, num_chunks, -1
        )  # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap
        chunked_hidden_states = chunked_hidden_states[
            :, :, :-window_overlap
        ]  # total_num_heads x num_chunks x window_overlap*window_overlap
        chunked_hidden_states = chunked_hidden_states.view(
            total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim
        )
        chunked_hidden_states = chunked_hidden_states[:, :, :, :-1]
        return chunked_hidden_states

    @staticmethod
    def _chunk(hidden_states, window_overlap):
        """convert into overlapping chunks. Chunk size = 2w, overlap size = w"""

        # non-overlapping chunks of size = 2w
        hidden_states = hidden_states.view(
            hidden_states.size(0),
            hidden_states.size(1) // (window_overlap * 2),
            window_overlap * 2,
            hidden_states.size(2),
        )

        # use `as_strided` to make the chunks overlap with an overlap size = window_overlap
        chunk_size = list(hidden_states.size())
        chunk_size[1] = chunk_size[1] * 2 - 1

        chunk_stride = list(hidden_states.stride())
        chunk_stride[1] = chunk_stride[1] // 2
        return hidden_states.as_strided(size=chunk_size, stride=chunk_stride)

    @staticmethod
    def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor:
        beginning_mask_2d = input_tensor.new_ones(
            affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0])
        beginning_mask = beginning_mask_2d[None, :, None, :]
        ending_mask = beginning_mask.flip(dims=(1, 3))
        beginning_input = input_tensor[:,
                                       :affected_seq_len, :, : affected_seq_len + 1]
        beginning_mask = beginning_mask.expand(beginning_input.size())
        # `== 1` converts to bool or uint8
        beginning_input.masked_fill_(beginning_mask == 1, -float("inf"))
        ending_input = input_tensor[:, -
                                    affected_seq_len:, :, -(affected_seq_len + 1):]
        ending_mask = ending_mask.expand(ending_input.size())
        # `== 1` converts to bool or uint8
        ending_input.masked_fill_(ending_mask == 1, -float("inf"))

    def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int):
        """
        Matrix multiplication of query and key tensors using with a sliding window attention pattern. This
        implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an
        overlap of size window_overlap
        """
        batch_size, seq_len, num_heads, head_dim = query.size()
        assert (
            seq_len % (window_overlap * 2) == 0
        ), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}"
        assert query.size() == key.size()

        chunks_count = seq_len // window_overlap - 1

        # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2
        query = query.transpose(1, 2).reshape(
            batch_size * num_heads, seq_len, head_dim)
        key = key.transpose(1, 2).reshape(
            batch_size * num_heads, seq_len, head_dim)

        query = self._chunk(query, window_overlap)
        key = self._chunk(key, window_overlap)

        # matrix multiplication
        # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim
        # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim
        # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap
        diagonal_chunked_attention_scores = torch.einsum(
            "bcxd,bcyd->bcxy", (query, key))  # multiply

        # convert diagonals into columns
        diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(
            diagonal_chunked_attention_scores, padding=(0, 0, 0, 1)
        )

        # allocate space for the overall attention matrix where the chunks are combined. The last dimension
        # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to
        # window_overlap previous words). The following column is attention score from each word to itself, then
        # followed by window_overlap columns for the upper triangle.

        diagonal_attention_scores = diagonal_chunked_attention_scores.new_empty(
            (batch_size * num_heads, chunks_count + 1,
             window_overlap, window_overlap * 2 + 1)
        )

        # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions
        # - copying the main diagonal and the upper triangle
        diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[
            :, :, :window_overlap, : window_overlap + 1
        ]
        diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[
            :, -1, window_overlap:, : window_overlap + 1
        ]
        # - copying the lower triangle
        diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[
            :, :, -(window_overlap + 1): -1, window_overlap + 1:
        ]

        diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[
            :, 0, : window_overlap - 1, 1 - window_overlap:
        ]

        # separate batch_size and num_heads dimensions again
        diagonal_attention_scores = diagonal_attention_scores.view(
            batch_size, num_heads, seq_len, 2 * window_overlap + 1
        ).transpose(2, 1)

        self._mask_invalid_locations(diagonal_attention_scores, window_overlap)
        return diagonal_attention_scores

    def _sliding_chunks_matmul_attn_probs_value(
        self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int
    ):
        """
        Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the
        same shape as `attn_probs`
        """
        batch_size, seq_len, num_heads, head_dim = value.size()

        assert seq_len % (window_overlap * 2) == 0
        assert attn_probs.size()[:3] == value.size()[:3]
        assert attn_probs.size(3) == 2 * window_overlap + 1
        chunks_count = seq_len // window_overlap - 1
        # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap

        chunked_attn_probs = attn_probs.transpose(1, 2).reshape(
            batch_size * num_heads, seq_len // window_overlap, window_overlap, 2 * window_overlap + 1
        )

        # group batch_size and num_heads dimensions into one
        value = value.transpose(1, 2).reshape(
            batch_size * num_heads, seq_len, head_dim)

        # pad seq_len with w at the beginning of the sequence and another window overlap at the end
        padded_value = nn.functional.pad(
            value, (0, 0, window_overlap, window_overlap), value=-1)

        # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap
        chunked_value_size = (batch_size * num_heads,
                              chunks_count + 1, 3 * window_overlap, head_dim)
        chunked_value_stride = padded_value.stride()
        chunked_value_stride = (
            chunked_value_stride[0],
            window_overlap * chunked_value_stride[1],
            chunked_value_stride[1],
            chunked_value_stride[2],
        )
        chunked_value = padded_value.as_strided(
            size=chunked_value_size, stride=chunked_value_stride)

        chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs)

        context = torch.einsum(
            "bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value))
        return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)

    @staticmethod
    def _get_global_attn_indices(is_index_global_attn):
        """compute global attn indices required throughout forward pass"""
        # helper variable
        num_global_attn_indices = is_index_global_attn.long().sum(dim=1)

        # max number of global attn indices in batch
        max_num_global_attn_indices = num_global_attn_indices.max()

        # indices of global attn
        is_index_global_attn_nonzero = is_index_global_attn.nonzero(
            as_tuple=True)

        # helper variable
        is_local_index_global_attn = torch.arange(
            max_num_global_attn_indices, device=is_index_global_attn.device
        ) < num_global_attn_indices.unsqueeze(dim=-1)

        # location of the non-padding values within global attention indices
        is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(
            as_tuple=True)

        # location of the padding values within global attention indices
        is_local_index_no_global_attn_nonzero = (
            is_local_index_global_attn == 0).nonzero(as_tuple=True)
        return (
            max_num_global_attn_indices,
            is_index_global_attn_nonzero,
            is_local_index_global_attn_nonzero,
            is_local_index_no_global_attn_nonzero,
        )

    def _concat_with_global_key_attn_probs(
        self,
        key_vectors,
        query_vectors,
        max_num_global_attn_indices,
        is_index_global_attn_nonzero,
        is_local_index_global_attn_nonzero,
        is_local_index_no_global_attn_nonzero,
    ):
        batch_size = key_vectors.shape[0]

        # create only global key vectors
        key_vectors_only_global = key_vectors.new_zeros(
            batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim
        )

        key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero]

        # (batch_size, seq_len, num_heads, max_num_global_attn_indices)
        attn_probs_from_global_key = torch.einsum(
            "blhd,bshd->blhs", (query_vectors, key_vectors_only_global))

        attn_probs_from_global_key[
            is_local_index_no_global_attn_nonzero[0], :, :, is_local_index_no_global_attn_nonzero[1]
        ] = -10000.0

        return attn_probs_from_global_key

    def _compute_attn_output_with_global_indices(
        self,
        value_vectors,
        attn_probs,
        max_num_global_attn_indices,
        is_index_global_attn_nonzero,
        is_local_index_global_attn_nonzero,
    ):
        batch_size = attn_probs.shape[0]

        # cut local attn probs to global only
        attn_probs_only_global = attn_probs.narrow(
            -1, 0, max_num_global_attn_indices)
        # get value vectors for global only
        value_vectors_only_global = value_vectors.new_zeros(
            batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim
        )
        value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero]

        # use `matmul` because `einsum` crashes sometimes with fp16
        # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
        # compute attn output only global
        attn_output_only_global = torch.matmul(
            attn_probs_only_global.transpose(
                1, 2), value_vectors_only_global.transpose(1, 2)
        ).transpose(1, 2)

        # reshape attn probs
        attn_probs_without_global = attn_probs.narrow(
            -1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices
        ).contiguous()

        # compute attn output with global
        attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value(
            attn_probs_without_global, value_vectors, self.one_sided_attn_window_size
        )
        return attn_output_only_global + attn_output_without_global

    def _compute_global_attn_output_from_hidden(
        self,
        global_query_vectors,
        global_key_vectors,
        global_value_vectors,
        max_num_global_attn_indices,
        layer_head_mask,
        is_local_index_global_attn_nonzero,
        is_index_global_attn_nonzero,
        is_local_index_no_global_attn_nonzero,
        is_index_masked,
    ):

        global_query_vectors = global_query_vectors.transpose(0, 1)
        seq_len, batch_size, _, _ = global_query_vectors.shape
        global_query_vectors_only_global = global_query_vectors.new_zeros(
            max_num_global_attn_indices, batch_size, self.num_heads, self.head_dim)
        global_query_vectors_only_global[is_local_index_global_attn_nonzero[::-1]] = global_query_vectors[
            is_index_global_attn_nonzero[::-1]
        ]

        seq_len_q, batch_size_q, _, _ = global_query_vectors_only_global.shape

        # print('global_query_vectors_only_global',global_query_vectors_only_global.shape)

        global_query_vectors_only_global = global_query_vectors_only_global.view(
            seq_len_q, batch_size_q, self.num_heads, self.head_dim)
        global_key_vectors = global_key_vectors.transpose(0, 1)
        global_value_vectors = global_value_vectors.transpose(0, 1)

        # reshape
        global_query_vectors_only_global = (
            global_query_vectors_only_global.contiguous()
            .view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )  # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim)
        global_key_vectors = (
            global_key_vectors.contiguous().view(-1, batch_size * self.num_heads,
                                                 self.head_dim).transpose(0, 1)
        )  # batch_size * self.num_heads, seq_len, head_dim)
        global_value_vectors = (
            global_value_vectors.contiguous().view(-1, batch_size * self.num_heads,
                                                   self.head_dim).transpose(0, 1)
        )  # batch_size * self.num_heads, seq_len, head_dim)

        # compute attn scores

        global_attn_scores = torch.bmm(
            global_query_vectors_only_global, global_key_vectors.transpose(1, 2))

        assert list(global_attn_scores.size()) == [
            batch_size * self.num_heads,
            max_num_global_attn_indices,
            seq_len,
        ], f"global_attn_scores have the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is {global_attn_scores.size()}."

        global_attn_scores = global_attn_scores.view(
            batch_size, self.num_heads, max_num_global_attn_indices, seq_len)

        global_attn_scores[
            is_local_index_no_global_attn_nonzero[0], :, is_local_index_no_global_attn_nonzero[1], :
        ] = -10000.0

        global_attn_scores = global_attn_scores.masked_fill(
            is_index_masked[:, None, None, :],
            -10000.0,
        )

        global_attn_scores = global_attn_scores.view(
            batch_size * self.num_heads, max_num_global_attn_indices, seq_len)

        # compute global attn probs
        global_attn_probs_float = nn.functional.softmax(
            global_attn_scores, dim=-1, dtype=torch.float32
        )  # use fp32 for numerical stability

        # apply layer head masking
        if layer_head_mask is not None:
            assert layer_head_mask.size() == (
                self.num_heads,
            ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
            global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view(
                batch_size, self.num_heads, max_num_global_attn_indices, seq_len
            )
            global_attn_probs_float = global_attn_probs_float.view(
                batch_size * self.num_heads, max_num_global_attn_indices, seq_len
            )

        global_attn_probs = nn.functional.dropout(
            global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training
        )

        # global attn output
        global_attn_output = torch.bmm(global_attn_probs, global_value_vectors)

        assert list(global_attn_output.size()) == [
            batch_size * self.num_heads,
            max_num_global_attn_indices,
            self.head_dim,
        ], f"global_attn_output tensor has the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is {global_attn_output.size()}."

        global_attn_probs = global_attn_probs.view(
            batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
        global_attn_output = global_attn_output.view(
            batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim
        )
        return global_attn_output, global_attn_probs

    def get_extended_attention_mask(self, attention_mask, input_shape, device):
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.

        Arguments:
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.

        Returns:
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.

        ones = torch.ones_like(attention_mask)
        zero = torch.zeros_like(attention_mask)
        attention_mask = torch.where(attention_mask < 0, zero, ones)

        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        # extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask


# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class LongformerSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class LongformerAttention(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.self = LongformerSelfAttention(config, layer_id)
        self.output = LongformerSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - \
            len(heads)
        self.self.all_head_size = self.self.attention_head_size * \
            self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_head_mask=None,
        is_index_masked=None,
        is_index_global_attn=None,
        is_global_attn=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
            output_attentions=output_attentions,
        )
        attn_output = self.output(self_outputs[0], hidden_states)
        outputs = (attn_output,) + self_outputs[1:]
        return outputs


# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class LongformerIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertOutput
class LongformerOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class LongformerLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.attention = LongformerAttention(config, layer_id)
        self.intermediate = LongformerIntermediate(config)
        self.output = LongformerOutput(config)
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_head_mask=None,
        is_index_masked=None,
        is_index_global_attn=None,
        is_global_attn=None,
        output_attentions=False,
    ):
        self_attn_outputs = self.attention(
            hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
            output_attentions=output_attentions,
        )
        attn_output = self_attn_outputs[0]
        outputs = self_attn_outputs[1:]

        layer_output = apply_chunking_to_forward(
            self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attn_output
        )
        outputs = (layer_output,) + outputs
        return outputs

    def ff_chunk(self, attn_output):
        intermediate_output = self.intermediate(attn_output)
        layer_output = self.output(intermediate_output, attn_output)
        return layer_output


class LongformerEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList(
            [LongformerLayer(config, layer_id=i) for i in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

        all_hidden_states = () if output_hidden_states else None
        # All local attentions.
        all_attentions = () if output_attentions else None
        all_global_attentions = () if (output_attentions and is_global_attn) else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            assert head_mask.size()[0] == (
                len(self.layer)
            ), f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.size()[0]}."
        for idx, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if getattr(self.config, "gradient_checkpointing", False) and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, is_global_attn, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    is_index_masked,
                    is_index_global_attn,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask=attention_mask,
                    layer_head_mask=head_mask[idx] if head_mask is not None else None,
                    is_index_masked=is_index_masked,
                    is_index_global_attn=is_index_global_attn,
                    is_global_attn=is_global_attn,
                    output_attentions=output_attentions,
                )
            hidden_states = layer_outputs[0]

            if output_attentions:
                # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
                all_attentions = all_attentions + \
                    (layer_outputs[1].transpose(1, 2),)

                if is_global_attn:
                    # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
                    all_global_attentions = all_global_attentions + \
                        (layer_outputs[2].transpose(2, 3),)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None
            )
        return LongformerBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            global_attentions=all_global_attentions,
        )


# Copied from transformers.models.bert.modeling_bert.BertPooler
class LongformerPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Longformer
class LongformerLMHead(nn.Module):
    """Longformer Head for masked language modeling."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = nn.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps)

        self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
        self.decoder.bias = self.bias

    def forward(self, features, **kwargs):
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)

        # project back to size of vocabulary with bias
        x = self.decoder(x)

        return x

    def _tie_weights(self):
        # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
        self.bias = self.decoder.bias


class LongformerPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = LongformerConfig
    base_model_prefix = "longformer"
    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(
                mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(
                mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


LONGFORMER_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.

    Parameters:
        config (:class:`~transformers.LongformerConfig`): Model configuration class with all the parameters of the
            model. Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

LONGFORMER_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.LongformerTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        global_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
            Mask to decide the attention given on each token, local attention or global attention. Tokens with global
            attention attends to all other tokens, and all other tokens attend to them. This is important for
            task-specific finetuning because it makes the model more flexible at representing the task. For example,
            for classification, the <s> token should be given global attention. For QA, all question tokens should also
            have global attention. Please refer to the `Longformer paper <https://arxiv.org/abs/2004.05150>`__ for more
            details. Mask values selected in ``[0, 1]``:

            - 0 for local attention (a sliding window attention),
            - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).

        head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        decoder_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`_
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare Longformer Model outputting raw hidden-states without any specific head on top.",
    LONGFORMER_START_DOCSTRING,
)
class LongformerModel(LongformerPreTrainedModel):
    """
    This class copied code from :class:`~transformers.RobertaModel` and overwrote standard self-attention with
    longformer self-attention to provide the ability to process long sequences following the self-attention approach
    described in `Longformer: the Long-Document Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy,
    Matthew E. Peters, and Arman Cohan. Longformer self-attention combines a local (sliding window) and global
    attention to extend to long documents without the O(n^2) increase in memory and compute.

    The self-attention module :obj:`LongformerSelfAttention` implemented here supports the combination of local and
    global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and
    dilated attention are more relevant for autoregressive language modeling than finetuning on downstream tasks.
    Future release will add support for autoregressive attention, but the support for dilated attention requires a
    custom CUDA kernel to be memory and compute efficient.

    """

    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config

        if isinstance(config.attention_window, int):
            assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value"
            assert config.attention_window > 0, "`config.attention_window` has to be positive"
            config.attention_window = [
                config.attention_window] * config.num_hidden_layers  # one value per layer
        else:
            assert len(config.attention_window) == config.num_hidden_layers, (
                "`len(config.attention_window)` should equal `config.num_hidden_layers`. "
                f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
            )

        self.embeddings = LongformerEmbeddings(config)
        self.encoder = LongformerEncoder(config)
        self.pooler = LongformerPooler(config) if add_pooling_layer else None

        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def _pad_to_window_size(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: torch.Tensor,
        position_ids: torch.Tensor,
        inputs_embeds: torch.Tensor,
        pad_token_id: int,
    ):
        """A helper function to pad tokens and mask to work with implementation of Longformer self-attention."""
        # padding
        attention_window = (
            self.config.attention_window
            if isinstance(self.config.attention_window, int)
            else max(self.config.attention_window)
        )

        assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}"
        input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape
        batch_size, seq_len = input_shape[:2]

        padding_len = (attention_window - seq_len %
                       attention_window) % attention_window
        if padding_len > 0:
            logger.info(
                f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
                f"`config.attention_window`: {attention_window}"
            )
            if input_ids is not None:
                input_ids = nn.functional.pad(
                    input_ids, (0, padding_len), value=pad_token_id)
            if position_ids is not None:
                # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings
                position_ids = nn.functional.pad(
                    position_ids, (0, padding_len), value=pad_token_id)
            if inputs_embeds is not None:
                input_ids_padding = inputs_embeds.new_full(
                    (batch_size, padding_len),
                    self.config.pad_token_id,
                    dtype=torch.long,
                )
                inputs_embeds_padding = self.embeddings(input_ids_padding)
                inputs_embeds = torch.cat(
                    [inputs_embeds, inputs_embeds_padding], dim=-2)

            attention_mask = nn.functional.pad(
                attention_mask, (0, padding_len), value=False
            )  # no attention on the padding tokens
            token_type_ids = nn.functional.pad(
                token_type_ids, (0, padding_len), value=0)  # pad with token_type_id = 0

        return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds

    def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor):
        # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn)
        # (global_attention_mask + 1) => 1 for local attention, 2 for global attention
        # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention
        if attention_mask is not None:
            attention_mask = attention_mask * (global_attention_mask + 1)
        else:
            # simply use `global_attention_mask` as `attention_mask`
            # if no `attention_mask` is given
            attention_mask = global_attention_mask + 1
        return attention_mask

    @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=LongformerBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        global_attention_mask=None,
        head_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""

        Returns:

        Examples::

            >>> import torch
            >>> from transformers import LongformerModel, LongformerTokenizer

            >>> model = LongformerModel.from_pretrained('allenai/longformer-base-4096')
            >>> tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')

            >>> SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000)  # long input document
            >>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0)  # batch of size 1

            >>> attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to local attention
            >>> global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to global attention to be deactivated for all tokens
            >>> global_attention_mask[:, [1, 4, 21,]] = 1  # Set global attention to random tokens for the sake of this example
            ...                                     # Usually, set global attention based on the task. For example,
            ...                                     # classification: the <s> token
            ...                                     # QA: question tokens
            ...                                     # LM: potentially on the beginning of sentences and paragraphs
            >>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)
            >>> sequence_output = outputs.last_hidden_state
            >>> pooled_output = outputs.pooler_output
        """

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError(
                "You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(
                input_shape, dtype=torch.long, device=device)

        # merge `global_attention_mask` and `attention_mask`
        if global_attention_mask is not None:
            attention_mask = self._merge_to_attention_mask(
                attention_mask, global_attention_mask)

        if self.config.use_sparse_attention:
            padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size(
                input_ids=input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                position_ids=position_ids,
                inputs_embeds=inputs_embeds,
                pad_token_id=self.config.pad_token_id,
            )

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)[
            :, 0, 0, :
        ]

        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(
            sequence_output) if self.pooler is not None else None

        # undo padding
        if self.config.use_sparse_attention:
            if padding_len > 0:
                # unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1)
                sequence_output = sequence_output[:, :-padding_len]

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return LongformerBaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            global_attentions=encoder_outputs.global_attentions,
        )


@add_start_docstrings("""Longformer Model with a `language modeling` head on top. """, LONGFORMER_START_DOCSTRING)
class LongformerForMaskedLM(LongformerPreTrainedModel):

    _keys_to_ignore_on_load_unexpected = [r"pooler"]

    def __init__(self, config):
        super().__init__(config)

        self.longformer = LongformerModel(config, add_pooling_layer=False)
        self.lm_head = LongformerLMHead(config)

        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        self.lm_head.decoder = new_embeddings

    @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=LongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        global_attention_mask=None,
        head_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
            config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
        kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
            Used to hide legacy arguments that have been deprecated.

        Returns:

        Examples::

            >>> import torch
            >>> from transformers import LongformerForMaskedLM, LongformerTokenizer

            >>> model = LongformerForMaskedLM.from_pretrained('allenai/longformer-base-4096')
            >>> tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')

            >>> SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000)  # long input document
            >>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0)  # batch of size 1

            >>> attention_mask = None  # default is local attention everywhere, which is a good choice for MaskedLM
            ...                        # check ``LongformerModel.forward`` for more details how to set `attention_mask`
            >>> outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids)
            >>> loss = outputs.loss
            >>> prediction_logits = output.logits
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(
                prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return LongformerMaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )


@add_start_docstrings(
    """
    Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    """,
    LONGFORMER_START_DOCSTRING,
)
class LongformerForSequenceClassification(LongformerPreTrainedModel):

    _keys_to_ignore_on_load_unexpected = [r"pooler"]

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.longformer = LongformerModel(config, add_pooling_layer=False)
        self.classifier = LongformerClassificationHead(config)

        self.init_weights()

    @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        processor_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=LongformerSequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        global_attention_mask=None,
        head_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if global_attention_mask is None:
            logger.info("Initializing global attention on CLS token...")
            global_attention_mask = torch.zeros_like(input_ids)
            # global attention on cls token
            global_attention_mask[:, 0] = 1

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(
                    logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return LongformerSequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )


class LongformerClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, hidden_states, **kwargs):
        # take <s> token (equiv. to [CLS])
        hidden_states = hidden_states[:, 0, :]
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = torch.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        output = self.out_proj(hidden_states)
        return output


@add_start_docstrings(
    """
    Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD /
    TriviaQA (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    LONGFORMER_START_DOCSTRING,
)
class LongformerForQuestionAnswering(LongformerPreTrainedModel):

    _keys_to_ignore_on_load_unexpected = [r"pooler"]

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.longformer = LongformerModel(config, add_pooling_layer=False)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=LongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        global_attention_mask=None,
        head_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.

        Returns:

        Examples::

            >>> from transformers import LongformerTokenizer, LongformerForQuestionAnswering
            >>> import torch

            >>> tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
            >>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")

            >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
            >>> encoding = tokenizer(question, text, return_tensors="pt")
            >>> input_ids = encoding["input_ids"]

            >>> # default is local attention everywhere
            >>> # the forward method will automatically set global attention on question tokens
            >>> attention_mask = encoding["attention_mask"]

            >>> outputs = model(input_ids, attention_mask=attention_mask)
            >>> start_logits = outputs.start_logits
            >>> end_logits = outputs.end_logits
            >>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())

            >>> answer_tokens = all_tokens[torch.argmax(start_logits) :torch.argmax(end_logits)+1]
            >>> answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # remove space prepending space token

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if global_attention_mask is None:
            if input_ids is None:
                logger.warning(
                    "It is not possible to automatically generate the `global_attention_mask` because input_ids is None. Please make sure that it is correctly set."
                )
            else:
                # set global attention on question tokens automatically
                global_attention_mask = _compute_global_attention_mask(
                    input_ids, self.config.sep_token_id)

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return LongformerQuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )


@add_start_docstrings(
    """
    Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
    for Named-Entity-Recognition (NER) tasks.
    """,
    LONGFORMER_START_DOCSTRING,
)
class LongformerForTokenClassification(LongformerPreTrainedModel):

    _keys_to_ignore_on_load_unexpected = [r"pooler"]

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.longformer = LongformerModel(config, add_pooling_layer=False)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        processor_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=LongformerTokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        global_attention_mask=None,
        head_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
            1]``.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)
                active_labels = torch.where(
                    active_loss, labels.view(-1), torch.tensor(
                        loss_fct.ignore_index).type_as(labels)
                )
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(
                    logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return LongformerTokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )


@add_start_docstrings(
    """
    Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
    a softmax) e.g. for RocStories/SWAG tasks.
    """,
    LONGFORMER_START_DOCSTRING,
)
class LongformerForMultipleChoice(LongformerPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.longformer = LongformerModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.init_weights()

    @add_start_docstrings_to_model_forward(
        LONGFORMER_INPUTS_DOCSTRING.format(
            "batch_size, num_choices, sequence_length")
    )
    @add_code_sample_docstrings(
        processor_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=LongformerMultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        token_type_ids=None,
        attention_mask=None,
        global_attention_mask=None,
        head_mask=None,
        labels=None,
        position_ids=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
            num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
            :obj:`input_ids` above)
        """
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # set global attention on question tokens
        if global_attention_mask is None and input_ids is not None:
            logger.info("Initializing global attention on multiple choice...")
            # put global attention on all tokens after `config.sep_token_id`
            global_attention_mask = torch.stack(
                [
                    _compute_global_attention_mask(
                        input_ids[:, i], self.config.sep_token_id, before_sep_token=False)
                    for i in range(num_choices)
                ],
                dim=1,
            )

        flat_input_ids = input_ids.view(-1, input_ids.size(-1)
                                        ) if input_ids is not None else None
        flat_position_ids = position_ids.view(
            -1, position_ids.size(-1)) if position_ids is not None else None
        flat_token_type_ids = token_type_ids.view(
            -1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(
            -1, attention_mask.size(-1)) if attention_mask is not None else None
        flat_global_attention_mask = (
            global_attention_mask.view(-1, global_attention_mask.size(-1))
            if global_attention_mask is not None
            else None
        )
        flat_inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2),
                               inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        outputs = self.longformer(
            flat_input_ids,
            position_ids=flat_position_ids,
            token_type_ids=flat_token_type_ids,
            attention_mask=flat_attention_mask,
            global_attention_mask=flat_global_attention_mask,
            head_mask=head_mask,
            inputs_embeds=flat_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return LongformerMultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )