HaloMaster's picture
add fengshen
50f0fbb
raw
history blame
No virus
68.8 kB
# coding: utf-8
# Copyright 2019 Sinovation Ventures AI Institute
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is partially derived from the code at
# https://github.com/huggingface/transformers/tree/master/transformers
#
# Original copyright notice:
#
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ZEN2 model classes."""
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import logging
import math
import os
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from dataclasses import dataclass
from typing import Optional
from transformers import PreTrainedModel
from fengshen.models.zen2.configuration_zen2 import ZenConfig
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese/resolve/main/pytorch_model.bin',
'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese/resolve/main/pytorch_model.bin',
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese/resolve/main/config.json',
'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese/resolve/main/config.json',
}
BERT_CONFIG_NAME = 'bert_config.json'
TF_WEIGHTS_NAME = 'model.ckpt'
def prune_linear_layer(layer, index, dim=0):
""" Prune a linear layer (a model parameters) to keep only entries in index.
Return the pruned layer as a new layer with requires_grad=True.
Used to remove heads.
"""
index = index.to(layer.weight.device)
W = layer.weight.index_select(dim, index).clone().detach()
if layer.bias is not None:
if dim == 1:
b = layer.bias.clone().detach()
else:
b = layer.bias[index].clone().detach()
new_size = list(layer.weight.size())
new_size[dim] = len(index)
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
new_layer.weight.requires_grad = False
new_layer.weight.copy_(W.contiguous())
new_layer.weight.requires_grad = True
if layer.bias is not None:
new_layer.bias.requires_grad = False
new_layer.bias.copy_(b.contiguous())
new_layer.bias.requires_grad = True
return new_layer
def load_tf_weights_in_bert(model, tf_checkpoint_path):
""" Load tf checkpoints in a pytorch model
"""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
tf_path = os.path.abspath(tf_checkpoint_path)
print("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
print("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split('/')
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
print("Skipping {}".format("/".join(name)))
continue
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
name_lists = re.split(r'_(\d+)', m_name)
else:
name_lists = [m_name]
if name_lists[0] == 'kernel' or name_lists[0] == 'gamma':
pointer = getattr(pointer, 'weight')
elif name_lists[0] == 'output_bias' or name_lists[0] == 'beta':
pointer = getattr(pointer, 'bias')
elif name_lists[0] == 'output_weights':
pointer = getattr(pointer, 'weight')
elif name_lists[0] == 'squad':
pointer = getattr(pointer, 'classifier')
else:
try:
pointer = getattr(pointer, name_lists[0])
except AttributeError:
print("Skipping {}".format("/".join(name)))
continue
if len(name_lists) >= 2:
num = int(name_lists[1])
pointer = pointer[num]
if m_name[-11:] == '_embeddings':
pointer = getattr(pointer, 'weight')
elif m_name == 'kernel':
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
try:
# from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
from torch.nn import LayerNorm as BertLayerNorm
except ImportError:
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertWordEmbeddings(nn.Module):
"""Construct the embeddings from ngram, position and token_type embeddings.
"""
def __init__(self, config):
super(BertWordEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.word_size, config.hidden_size, padding_idx=0)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class RelativeSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1568):
"""
:param embedding_dim: 每个位置的dimension
:param padding_idx:
:param init_size:
"""
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
assert init_size % 2 == 0
weights = self.get_embedding(
init_size+1,
embedding_dim,
padding_idx,
)
self.register_buffer('weights', weights)
self.register_buffer('_float_tensor', torch.FloatTensor(1))
def get_embedding(self, num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(-num_embeddings//2, num_embeddings//2, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
self.origin_shift = num_embeddings//2 + 1
return emb
def forward(self, input):
"""Input is expected to be of size [bsz x seqlen].
"""
bsz, _, _, seq_len = input.size()
max_pos = self.padding_idx + seq_len
if max_pos > self.origin_shift:
# recompute/expand embeddings if needed
weights = self.get_embedding(
max_pos*2,
self.embedding_dim,
self.padding_idx,
)
weights = weights.to(self._float_tensor)
del self.weights
self.origin_shift = weights.size(0)//2
self.register_buffer('weights', weights)
positions = torch.arange(-seq_len, seq_len).to(input.device).long() + self.origin_shift # 2*seq_len
embed = self.weights.index_select(0, positions.long()).detach()
return embed
class BertSelfAttention(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = output_attentions
self.keep_multihead_output = keep_multihead_output
self.multihead_output = None
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
self.position_embedding = RelativeSinusoidalPositionalEmbedding(self.attention_head_size, 0, 1200)
self.r_r_bias = nn.Parameter(
nn.init.xavier_normal_(torch.zeros(self.num_attention_heads, self.attention_head_size)))
self.r_w_bias = nn.Parameter(
nn.init.xavier_normal_(torch.zeros(self.num_attention_heads, self.attention_head_size)))
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, head_mask=None):
position_embedding = self.position_embedding(attention_mask)
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
rw_head_q = query_layer + self.r_r_bias[:, None]
AC = torch.einsum('bnqd,bnkd->bnqk', [rw_head_q.float(), key_layer.float()]) # b x n x l x d, n是head
D_ = torch.einsum('nd,ld->nl', self.r_w_bias.float(), position_embedding.float())[None, :,
None] # head x 2max_len, 每个head对位置的bias
B_ = torch.einsum('bnqd,ld->bnql', query_layer.float(),
position_embedding.float()) # bsz x head x max_len x 2max_len,每个query对每个shift的偏移
BD = B_ + D_ # bsz x head x max_len x 2max_len, 要转换为bsz x head x max_len x max_len
BD = self._shift(BD)
attention_scores = AC + BD
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = self.softmax(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs.type_as(value_layer), value_layer)
if self.keep_multihead_output:
self.multihead_output = context_layer
self.multihead_output.retain_grad()
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
if self.output_attentions:
return attention_probs, context_layer
return context_layer
def _shift(self, BD):
"""
类似
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
转换为
0 1 2
-1 0 1
-2 -1 0
:param BD: batch_size x n_head x max_len x 2max_len
:return: batch_size x n_head x max_len x max_len
"""
bsz, n_head, max_len, _ = BD.size()
zero_pad = BD.new_zeros(bsz, n_head, max_len, 1)
BD = torch.cat([BD, zero_pad], dim=-1).view(bsz, n_head, -1, max_len) # bsz x n_head x (2max_len+1) x max_len
BD = BD[:, :, :-1].view(bsz, n_head, max_len, -1) # bsz x n_head x 2max_len x max_len
BD = BD[:, :, :, max_len:]
return BD
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(BertAttention, self).__init__()
self.output_attentions = output_attentions
self.self = BertSelfAttention(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.output = BertSelfOutput(config)
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
for head in heads:
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
def forward(self, input_tensor, attention_mask, head_mask=None):
self_output = self.self(input_tensor, attention_mask, head_mask)
if self.output_attentions:
attentions, self_output = self_output
attention_output = self.output(self_output, input_tensor)
if self.output_attentions:
return attentions, attention_output
return attention_output
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
# if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(BertLayer, self).__init__()
self.output_attentions = output_attentions
self.attention = BertAttention(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask, head_mask=None):
attention_output = self.attention(hidden_states, attention_mask, head_mask)
if self.output_attentions:
attentions, attention_output = attention_output
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
if self.output_attentions:
return attentions, layer_output
return layer_output
class ZenEncoder(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenEncoder, self).__init__()
self.output_attentions = output_attentions
layer = BertLayer(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
self.word_layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_word_layers)])
self.num_hidden_word_layers = config.num_hidden_word_layers
def forward(self, hidden_states, ngram_hidden_states, ngram_position_matrix, attention_mask,
ngram_attention_mask,
output_all_encoded_layers=True, head_mask=None):
# Need to check what is the attention masking doing here
all_encoder_layers = []
all_attentions = []
num_hidden_ngram_layers = self.num_hidden_word_layers
for i, layer_module in enumerate(self.layer):
hidden_states = layer_module(hidden_states, attention_mask, head_mask[i])
if i < num_hidden_ngram_layers:
ngram_hidden_states = self.word_layers[i](ngram_hidden_states, ngram_attention_mask, head_mask[i])
if self.output_attentions:
ngram_attentions, ngram_hidden_states = ngram_hidden_states
all_attentions.append(ngram_attentions)
if self.output_attentions:
attentions, hidden_states = hidden_states
all_attentions.append(attentions)
hidden_states += torch.bmm(ngram_position_matrix.float(), ngram_hidden_states.float())
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if self.output_attentions:
return all_attentions, all_encoder_layers
return all_encoder_layers
class BertPooler(nn.Module):
def __init__(self, config):
super(BertPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
# if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertLMPredictionHead, self).__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
bert_model_embedding_weights.size(0),
bias=False)
self.decoder.weight = bert_model_embedding_weights
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
class ZenOnlyMLMHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(ZenOnlyMLMHead, self).__init__()
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class ZenOnlyNSPHead(nn.Module):
def __init__(self, config):
super(ZenOnlyNSPHead, self).__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
class ZenPreTrainingHeads(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(ZenPreTrainingHeads, self).__init__()
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class ZenPreTrainedModel(PreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = ZenConfig
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class ZenModel(ZenPreTrainedModel):
"""ZEN model ("BERT-based Chinese (Z) text encoder Enhanced by N-gram representations").
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs: Tuple of (encoded_layers, pooled_output)
`encoded_layers`: controled by `output_all_encoded_layers` argument:
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
to the last attention block of shape [batch_size, sequence_length, hidden_size],
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
classifier pretrained on top of the hidden state associated to the first character of the
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenModel, self).__init__(config)
self.output_attentions = output_attentions
self.embeddings = BertEmbeddings(config)
self.word_embeddings = BertWordEmbeddings(config)
self.encoder = ZenEncoder(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.pooler = BertPooler(config)
self.init_weights()
def prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_multihead_outputs(self):
""" Gather all multi-head outputs.
Return: list (layers) of multihead module outputs with gradients
"""
return [layer.attention.self.multihead_output for layer in self.encoder.layer]
def forward(self, input_ids,
input_ngram_ids,
ngram_position_matrix,
token_type_ids=None,
ngram_token_type_ids=None,
attention_mask=None,
ngram_attention_mask=None,
output_all_encoded_layers=True,
head_mask=None):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
if ngram_attention_mask is None:
ngram_attention_mask = torch.ones_like(input_ngram_ids)
if ngram_token_type_ids is None:
ngram_token_type_ids = torch.zeros_like(input_ngram_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_ngram_attention_mask = ngram_attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
extended_ngram_attention_mask = extended_ngram_attention_mask.to(dtype=next(self.parameters()).dtype)
extended_ngram_attention_mask = (1.0 - extended_ngram_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(
-1) # We can specify head_mask for each layer
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
embedding_output = self.embeddings(input_ids, token_type_ids)
ngram_embedding_output = self.word_embeddings(input_ngram_ids, ngram_token_type_ids)
encoded_layers = self.encoder(embedding_output,
ngram_embedding_output,
ngram_position_matrix,
extended_attention_mask,
extended_ngram_attention_mask,
output_all_encoded_layers=output_all_encoded_layers,
head_mask=head_mask)
if self.output_attentions:
all_attentions, encoded_layers = encoded_layers
sequence_output = encoded_layers[-1]
pooled_output = self.pooler(sequence_output)
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
if self.output_attentions:
return all_attentions, encoded_layers, pooled_output
return encoded_layers, pooled_output
class ZenForPreTraining(ZenPreTrainedModel):
"""ZEN model with pre-training heads.
This module comprises the ZEN model followed by the two pre-training heads:
- the masked language modeling head, and
- the next sentence classification head.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
`next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
with indices selected in [0, 1].
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `masked_lm_labels` and `next_sentence_label` are not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `masked_lm_labels` or `next_sentence_label` is `None`:
Outputs a tuple comprising
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- the next sentence classification logits of shape [batch_size, 2].
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenForPreTraining, self).__init__(config)
self.output_attentions = output_attentions
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.cls = ZenPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None,
ngram_token_type_ids=None,
attention_mask=None,
ngram_attention_mask=None,
masked_lm_labels=None,
next_sentence_label=None, head_mask=None):
outputs = self.bert(input_ids,
input_ngram_ids,
ngram_position_matrix,
token_type_ids,
ngram_token_type_ids,
attention_mask,
ngram_attention_mask,
output_all_encoded_layers=False, head_mask=head_mask)
if self.output_attentions:
all_attentions, sequence_output, pooled_output = outputs
else:
sequence_output, pooled_output = outputs
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
if masked_lm_labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
return total_loss
elif self.output_attentions:
return all_attentions, prediction_scores, seq_relationship_score
return prediction_scores, seq_relationship_score
class ZenForMaskedLM(ZenPreTrainedModel):
"""ZEN model with the masked language modeling head.
This module comprises the ZEN model followed by the masked language modeling head.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
`head_mask`: an optional torch.LongTensor of shape [num_heads] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `masked_lm_labels` is not `None`:
Outputs the masked language modeling loss.
if `masked_lm_labels` is `None`:
Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenForMaskedLM, self).__init__(config)
self.output_attentions = output_attentions
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.cls = ZenOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
output_all_encoded_layers=False,
head_mask=head_mask)
if self.output_attentions:
all_attentions, sequence_output, _ = outputs
else:
sequence_output, _ = outputs
prediction_scores = self.cls(sequence_output)
if masked_lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
return masked_lm_loss
elif self.output_attentions:
return all_attentions, prediction_scores
return prediction_scores
class ZenForNextSentencePrediction(ZenPreTrainedModel):
"""ZEN model with next sentence prediction head.
This module comprises the ZEN model followed by the next sentence classification head.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
with indices selected in [0, 1].
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `next_sentence_label` is not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `next_sentence_label` is `None`:
Outputs the next sentence classification logits of shape [batch_size, 2].
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenForNextSentencePrediction, self).__init__(config)
self.output_attentions = output_attentions
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.cls = ZenOnlyNSPHead(config)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
output_all_encoded_layers=False,
head_mask=head_mask)
if self.output_attentions:
all_attentions, _, pooled_output = outputs
else:
_, pooled_output = outputs
seq_relationship_score = self.cls(pooled_output)
if next_sentence_label is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
return next_sentence_loss
elif self.output_attentions:
return all_attentions, seq_relationship_score
return seq_relationship_score
class ZenForSequenceClassification(ZenPreTrainedModel):
"""ZEN model for classification.
This module is composed of the ZEN model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
"""
def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
super(ZenForSequenceClassification, self).__init__(config)
self.output_attentions = output_attentions
self.num_labels = config.num_labels
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids,
attention_mask=attention_mask,
output_all_encoded_layers=False,
head_mask=head_mask)
if self.output_attentions:
all_attentions, _, pooled_output = outputs
else:
_, pooled_output = outputs
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss, logits
elif self.output_attentions:
return all_attentions, logits
return loss, logits
@dataclass
class TokenClassifierOutput:
"""
Base class for outputs of token classification models.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
class ZenForTokenClassification(ZenPreTrainedModel):
"""ZEN model for token-level classification.
This module is composed of the ZEN model with a linear layer on top of
the full hidden state of the last layer.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
"""
def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
super(ZenForTokenClassification, self).__init__(config)
self.output_attentions = output_attentions
self.num_labels = config.num_labels
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
self.init_weights()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
input_ngram_ids=None, ngram_position_matrix=None, head_mask=None, b_use_valid_filter=False):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids,
attention_mask=attention_mask, output_all_encoded_layers=False, head_mask=head_mask)
if self.output_attentions:
all_attentions, sequence_output, _ = outputs
else:
sequence_output, _ = outputs
# if b_use_valid_filter:
# batch_size, max_len, feat_dim = sequence_output.shape
# valid_output = torch.zeros(batch_size, max_len, feat_dim, dtype=sequence_output.dtype,
# device=input_ids.device)
# for i in range(batch_size):
# temp = sequence_output[i][valid_ids[i] == 1]
# valid_output[i][:temp.size(0)] = temp
# else:
# valid_output = sequence_output
valid_output = sequence_output
sequence_output = self.dropout(valid_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=0)
# Only keep active parts of the loss
# attention_mask_label = None
# if attention_mask_label is not None:
if attention_mask is not None:
# active_loss = attention_mask_label.view(-1) == 1
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return TokenClassifierOutput(loss, logits)
else:
return TokenClassifierOutput(loss, logits)
class ZenForQuestionAnswering(ZenPreTrainedModel):
"""BERT model for Question Answering (span extraction).
This module is composed of the BERT model with a linear layer on top of
the sequence output that computes start_logits and end_logits
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
into account for computing the loss.
`end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
into account for computing the loss.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
Outputs:
if `start_positions` and `end_positions` are not `None`:
Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
if `start_positions` or `end_positions` is `None`:
Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
position tokens of shape [batch_size, sequence_length].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForQuestionAnswering(config)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenForQuestionAnswering, self).__init__(config)
self.output_attentions = output_attentions
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, start_positions=None,
end_positions=None, head_mask=None):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids,
attention_mask=attention_mask,
output_all_encoded_layers=False,
head_mask=head_mask)
if self.output_attentions:
all_attentions, sequence_output, _ = outputs
else:
sequence_output, _ = outputs
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return total_loss
elif self.output_attentions:
return all_attentions, start_logits, end_logits
return start_logits, end_logits