#!/bin/bash #SBATCH --job-name=t5_cn_small_pretrain_v2 #SBATCH --nodes=1 #SBATCH --ntasks-per-node=8 #SBATCH --gres=gpu:8 # number of gpus #SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks) #SBATCH -o %x-%j.log #SBATCH -e %x-%j.err #SBATCH -x dgx050 set -x -e source activate base echo "START TIME: $(date)" MICRO_BATCH_SIZE=32 ROOT_DIR=/cognitive_comp/ganruyi/experiments/t5_cn_small_pretrain_v2/ ZERO_STAGE=1 config_json="$ROOT_DIR/ds_config.t5_cn_small_pretrain_v2.$SLURM_JOBID.json" export MASTER_PORT=$[RANDOM%10000+30000] # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() cat < $config_json { "zero_optimization": { "stage": 1 }, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "params": { "betas": [ 0.9, 0.95 ], "eps": 1e-08, "lr": 1e-04, "weight_decay": 0.01 }, "type": "AdamW" }, "scheduler": { "type": "WarmupLR", "params":{ "warmup_min_lr": 0, "warmup_max_lr": 1e-4, "warmup_num_steps": 10000 } }, "steps_per_print": 100, "gradient_clipping": 1, "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, "zero_allow_untested_optimizer": false } EOT export PL_DEEPSPEED_CONFIG_PATH=$config_json export TORCH_EXTENSIONS_DIR=/cognitive_comp/ganruyi/tmp/torch_extendsions # strategy=ddp strategy=deepspeed_stage_1 TRAINER_ARGS=" --max_epochs 1 \ --gpus 8 \ --num_nodes 1 \ --strategy ${strategy} \ --default_root_dir $ROOT_DIR \ --dirpath $ROOT_DIR/ckpt \ --save_top_k 3 \ --every_n_train_steps 0 \ --monitor train_loss \ --mode min \ --save_last \ --val_check_interval 0.01 \ --preprocessing_num_workers 20 \ " # --accumulate_grad_batches 8 \ DATA_DIR=wudao_180g_mt5_tokenized DATA_ARGS=" --train_batchsize $MICRO_BATCH_SIZE \ --valid_batchsize $MICRO_BATCH_SIZE \ --train_data ${DATA_DIR} \ --train_split_size 0.999 \ --max_seq_length 1024 \ " MODEL_ARGS=" --pretrained_model_path /cognitive_comp/ganruyi/experiments/t5_cn_small_pretrain/Randeng-T5-77M \ --learning_rate 1e-4 \ --weight_decay 0.1 \ --keep_tokens_path /cognitive_comp/ganruyi/hf_models/t5_cn_small/sentencepiece_cn_keep_tokens.json \ " # --resume_from_checkpoint /cognitive_comp/ganruyi/fengshen/t5_cn_small_pretrain/ckpt/last.ckpt \ SCRIPTS_PATH=/cognitive_comp/ganruyi/Fengshenbang-LM/fengshen/examples/pretrain_t5/pretrain_t5.py export CMD=" \ $SCRIPTS_PATH \ $TRAINER_ARGS \ $MODEL_ARGS \ $DATA_ARGS \ " echo $CMD SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif # to debug - add echo (it exits and prints what it would have launched) #run_cmd="$PY_LAUNCHER $CMD" # salloc --nodes=1 --gres=gpu:2 --cpus-per-gpu=20 -t 24:00:00 clear; srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD' # clear; srun --job-name=t5_cn_small_pretrain_v2 --jobid=153124 --nodes=1 --ntasks-per-node=8 --gres=gpu:8 --cpus-per-task=30 -o %x-%j.log -e %x-%j.err singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD'