#!/bin/bash #SBATCH --job-name=slurm-test # create a short name for your job #SBATCH --nodes=1 # node count #SBATCH --ntasks=4 # total number of tasks across all nodes #SBATCH --cpus-per-task=16 # cpu-cores per task (>1 if multi-threaded tasks) #SBATCH --mem-per-cpu=8G # memory per cpu-core (4G is default) #SBATCH --gres=gpu:4 # number of gpus per node #SBATCH --mail-type=ALL # send email when job begins, ends or failed etc. export TORCH_EXTENSIONS_DIR=/cognitive_comp/yangping/cache/torch_extendsions BERT_NAME=bert-3.9B TASK=tnews TEXTA_NAME=sentence LABEL_NAME=label ID_NAME=id BATCH_SIZE=16 VAL_BATCH_SIZE=56 ZERO_STAGE=2 ROOT_PATH=cognitive_comp DATA_DIR=/$ROOT_PATH/yangping/data/ChineseCLUE_DATA/${TASK}_public/ PRETRAINED_MODEL_PATH=/$ROOT_PATH/yangping/pretrained_model/$BERT_NAME/ CHECKPOINT_PATH=/$ROOT_PATH/yangping/checkpoints/fengshen-finetune/$TASK/ DEFAULT_ROOT_DIR=/cognitive_comp/yangping/nlp/fengshen/fengshen/scripts/log/$TASK/$BERT_NAME/nograd OUTPUT_PATH=/$ROOT_PATH/yangping/nlp/modelevaluation/output/${TASK}_predict.json config_json="./ds_config.$SLURM_JOBID.json" # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() # reduce_bucket_size: hidden_size*hidden_size # stage3_prefetch_bucket_size: 0.9 * hidden_size * hidden_size # stage3_param_persistence_threshold: 10 * hidden_size cat < $config_json { "train_micro_batch_size_per_gpu": $BATCH_SIZE, "steps_per_print": 100, "gradient_clipping": 1.0, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": 6553600, "stage3_prefetch_bucket_size": 5898240, "stage3_param_persistence_threshold": 25600, "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_fp16_weights_on_model_save": true }, "optimizer": { "type": "Adam", "params": { "lr": 1e-5, "betas": [ 0.9, 0.95 ], "eps": 1e-8, "weight_decay": 1e-2 } }, "scheduler": { "type": "WarmupLR", "params":{ "warmup_min_lr": 5e-8, "warmup_max_lr": 1e-5, "warmup_num_steps": 400, "warmup_type": "linear" } }, "zero_allow_untested_optimizer": false, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "activation_checkpointing": { "partition_activations": false, "contiguous_memory_optimization": false }, "wall_clock_breakdown": false } EOT export PL_DEEPSPEED_CONFIG_PATH=$config_json DATA_ARGS="\ --data_dir $DATA_DIR \ --train_data train.json \ --valid_data dev.json \ --test_data test.json \ --train_batchsize $BATCH_SIZE \ --valid_batchsize $VAL_BATCH_SIZE \ --max_length 128 \ --texta_name $TEXTA_NAME \ --label_name $LABEL_NAME \ --id_name $ID_NAME \ " MODEL_ARGS="\ --learning_rate 0.00001 \ --weight_decay 0.01 \ --warmup 0.001 \ --num_labels 15 \ " MODEL_CHECKPOINT_ARGS="\ --monitor val_acc \ --save_top_k 3 \ --mode max \ --every_n_train_steps 200 \ --save_weights_only True \ --dirpath $CHECKPOINT_PATH \ --filename model-{epoch:02d}-{val_acc:.4f} \ " TRAINER_ARGS="\ --max_epochs 7 \ --gpus 4 \ --strategy deepspeed_stage_3 \ --precision 16 \ --gradient_clip_val 0.1 \ --check_val_every_n_epoch 1 \ --val_check_interval 100 \ --default_root_dir $DEFAULT_ROOT_DIR \ " options=" \ --pretrained_model_path $PRETRAINED_MODEL_PATH \ --output_save_path $OUTPUT_PATH \ $DATA_ARGS \ $MODEL_ARGS \ $MODEL_CHECKPOINT_ARGS \ $TRAINER_ARGS \ " DOCKER_PATH=/$ROOT_PATH/yangping/containers/pytorch21_06_py3_docker_image.sif SCRIPT_PATH=/$ROOT_PATH/yangping/nlp/fengshen/fengshen/examples/finetune_classification.py # python3 $SCRIPT_PATH $options srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $DOCKER_PATH python3 $SCRIPT_PATH $options