Spaces:
Runtime error
Runtime error
Commit
·
94c45be
1
Parent(s):
a3d45b2
test
Browse files- absa_evaluator.py +166 -0
- app.py +5 -0
- gradio_tst.py +130 -0
- preprocessing.py +115 -0
- requirements.txt +4 -0
absa_evaluator.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
|
3 |
+
import evaluate
|
4 |
+
from datasets import Features, Sequence, Value
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
|
7 |
+
from preprocessing import absa_term_preprocess
|
8 |
+
|
9 |
+
_CITATION = """
|
10 |
+
"""
|
11 |
+
|
12 |
+
_DESCRIPTION = """
|
13 |
+
Evaluation metrics for Aspect-Based Sentiment Analysis (ABSA) including precision, recall, and F1 score for aspect terms and polarities.
|
14 |
+
"""
|
15 |
+
|
16 |
+
_KWARGS_DESCRIPTION = """
|
17 |
+
Computes precision, recall, and F1 score for aspect terms and polarities in Aspect-Based Sentiment Analysis (ABSA).
|
18 |
+
|
19 |
+
Args:
|
20 |
+
predictions: List of ABSA predictions with the following structure:
|
21 |
+
- 'aspects': Sequence of aspect annotations, each with the following keys:
|
22 |
+
- 'term': Aspect term
|
23 |
+
- 'polarity': Polarity of the aspect term
|
24 |
+
references: List of ABSA references with the same structure as predictions.
|
25 |
+
Returns:
|
26 |
+
aspect_precision: Precision score for aspect terms
|
27 |
+
aspect_recall: Recall score for aspect terms
|
28 |
+
aspect_f1: F1 score for aspect terms
|
29 |
+
polarity_precision: Precision score for aspect polarities
|
30 |
+
polarity_recall: Recall score for aspect polarities
|
31 |
+
polarity_f1: F1 score for aspect polarities
|
32 |
+
"""
|
33 |
+
|
34 |
+
|
35 |
+
class AbsaEvaluatorTest(evaluate.Metric):
|
36 |
+
def _info(self):
|
37 |
+
return evaluate.MetricInfo(
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
citation=_CITATION,
|
40 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
41 |
+
features=Features(
|
42 |
+
{
|
43 |
+
"predictions": Features(
|
44 |
+
{
|
45 |
+
"aspects": Features(
|
46 |
+
{
|
47 |
+
"term": Sequence(Value("string")),
|
48 |
+
"polarity": Sequence(Value("string")),
|
49 |
+
}
|
50 |
+
),
|
51 |
+
"category": Features(
|
52 |
+
{
|
53 |
+
"category": Sequence(Value("string")),
|
54 |
+
"polarity": Sequence(Value("string")),
|
55 |
+
}
|
56 |
+
),
|
57 |
+
}
|
58 |
+
),
|
59 |
+
"references": Features(
|
60 |
+
{
|
61 |
+
"aspects": Features(
|
62 |
+
{
|
63 |
+
"term": Sequence(Value("string")),
|
64 |
+
"polarity": Sequence(Value("string")),
|
65 |
+
}
|
66 |
+
),
|
67 |
+
"category": Features(
|
68 |
+
{
|
69 |
+
"category": Sequence(Value("string")),
|
70 |
+
"polarity": Sequence(Value("string")),
|
71 |
+
}
|
72 |
+
),
|
73 |
+
}
|
74 |
+
),
|
75 |
+
}
|
76 |
+
),
|
77 |
+
)
|
78 |
+
|
79 |
+
def _compute(self, predictions, references):
|
80 |
+
# preprocess aspect term
|
81 |
+
(
|
82 |
+
truth_aspect_terms,
|
83 |
+
pred_aspect_terms,
|
84 |
+
truth_term_polarities,
|
85 |
+
pred_term_polarities,
|
86 |
+
) = absa_term_preprocess(
|
87 |
+
references=references,
|
88 |
+
predictions=predictions,
|
89 |
+
subtask_key="aspects",
|
90 |
+
subtask_value="term",
|
91 |
+
)
|
92 |
+
# evaluate
|
93 |
+
term_results = self.semeval_metric(
|
94 |
+
truth_aspect_terms, pred_aspect_terms
|
95 |
+
)
|
96 |
+
term_polarity_acc = accuracy_score(
|
97 |
+
truth_term_polarities, pred_term_polarities
|
98 |
+
)
|
99 |
+
|
100 |
+
# preprocess category detection
|
101 |
+
(
|
102 |
+
truth_categories,
|
103 |
+
pred_categories,
|
104 |
+
truth_cat_polarities,
|
105 |
+
pred_cat_polarities,
|
106 |
+
) = absa_term_preprocess(
|
107 |
+
references=references,
|
108 |
+
predictions=predictions,
|
109 |
+
subtask_key="category",
|
110 |
+
subtask_value="category",
|
111 |
+
)
|
112 |
+
|
113 |
+
# evaluate
|
114 |
+
category_results = self.semeval_metric(
|
115 |
+
truth_categories, pred_categories
|
116 |
+
)
|
117 |
+
cat_polarity_acc = accuracy_score(
|
118 |
+
truth_cat_polarities, pred_cat_polarities
|
119 |
+
)
|
120 |
+
|
121 |
+
return {
|
122 |
+
"term_extraction_results": term_results,
|
123 |
+
"term_polarity_results_accuracy": term_polarity_acc,
|
124 |
+
"category_detection_results": category_results,
|
125 |
+
"category_polarity_results_accuracy": cat_polarity_acc,
|
126 |
+
}
|
127 |
+
|
128 |
+
def semeval_metric(
|
129 |
+
self, truths: List[List[str]], preds: List[List[str]]
|
130 |
+
) -> Dict[str, float]:
|
131 |
+
"""
|
132 |
+
Implements evaluation for extraction tasks using precision, recall, and F1 score.
|
133 |
+
|
134 |
+
Parameters:
|
135 |
+
- truths: List of lists, where each list contains the ground truth labels for a sample.
|
136 |
+
- preds: List of lists, where each list contains the predicted labels for a sample.
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
- A dictionary containing the precision, recall, F1 score, and counts of common, retrieved, and relevant.
|
140 |
+
|
141 |
+
link for code: link for this code: https://github.com/davidsbatista/Aspect-Based-Sentiment-Analysis/blob/1d9c8ec1131993d924e96676fa212db6b53cb870/libraries/baselines.py#L387
|
142 |
+
"""
|
143 |
+
b = 1
|
144 |
+
common, relevant, retrieved = 0.0, 0.0, 0.0
|
145 |
+
for truth, pred in zip(truths, preds):
|
146 |
+
common += len([a for a in pred if a in truth])
|
147 |
+
retrieved += len(pred)
|
148 |
+
relevant += len(truth)
|
149 |
+
precision = common / retrieved if retrieved > 0 else 0.0
|
150 |
+
recall = common / relevant if relevant > 0 else 0.0
|
151 |
+
f1 = (
|
152 |
+
(1 + (b**2))
|
153 |
+
* precision
|
154 |
+
* recall
|
155 |
+
/ ((precision * b**2) + recall)
|
156 |
+
if precision > 0 and recall > 0
|
157 |
+
else 0.0
|
158 |
+
)
|
159 |
+
return {
|
160 |
+
"precision": precision,
|
161 |
+
"recall": recall,
|
162 |
+
"f1_score": f1,
|
163 |
+
"common": common,
|
164 |
+
"retrieved": retrieved,
|
165 |
+
"relevant": relevant,
|
166 |
+
}
|
app.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from gradio_tst import launch_gradio_widget2
|
3 |
+
|
4 |
+
module = evaluate.load("absa_evaluator.py")
|
5 |
+
launch_gradio_widget2(module)
|
gradio_tst.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
from datasets import Value
|
9 |
+
|
10 |
+
import logging
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
|
15 |
+
|
16 |
+
|
17 |
+
def infer_gradio_input_types(feature_types):
|
18 |
+
"""
|
19 |
+
Maps metric feature types to input types for gradio Dataframes:
|
20 |
+
- float/int -> numbers
|
21 |
+
- string -> strings
|
22 |
+
- any other -> json
|
23 |
+
Note that json is not a native gradio type but will be treated as string that
|
24 |
+
is then parsed as a json.
|
25 |
+
"""
|
26 |
+
input_types = []
|
27 |
+
for feature_type in feature_types:
|
28 |
+
input_type = "json"
|
29 |
+
if isinstance(feature_type, Value):
|
30 |
+
if feature_type.dtype.startswith("int") or feature_type.dtype.startswith("float"):
|
31 |
+
input_type = "number"
|
32 |
+
elif feature_type.dtype == "string":
|
33 |
+
input_type = "str"
|
34 |
+
input_types.append(input_type)
|
35 |
+
return input_types
|
36 |
+
|
37 |
+
|
38 |
+
def json_to_string_type(input_types):
|
39 |
+
"""Maps json input type to str."""
|
40 |
+
return ["str" if i == "json" else i for i in input_types]
|
41 |
+
|
42 |
+
|
43 |
+
def parse_readme(filepath):
|
44 |
+
"""Parses a repositories README and removes"""
|
45 |
+
if not os.path.exists(filepath):
|
46 |
+
return "No README.md found."
|
47 |
+
with open(filepath, "r") as f:
|
48 |
+
text = f.read()
|
49 |
+
match = REGEX_YAML_BLOCK.search(text)
|
50 |
+
if match:
|
51 |
+
text = text[match.end() :]
|
52 |
+
return text
|
53 |
+
|
54 |
+
|
55 |
+
def parse_gradio_data(data, input_types):
|
56 |
+
"""Parses data from gradio Dataframe for use in metric."""
|
57 |
+
metric_inputs = {}
|
58 |
+
data.replace("", np.nan, inplace=True)
|
59 |
+
data.dropna(inplace=True)
|
60 |
+
for feature_name, input_type in zip(data, input_types):
|
61 |
+
if input_type == "json":
|
62 |
+
metric_inputs[feature_name] = [json.loads(d) for d in data[feature_name].to_list()]
|
63 |
+
elif input_type == "str":
|
64 |
+
metric_inputs[feature_name] = [d.strip('"') for d in data[feature_name].to_list()]
|
65 |
+
else:
|
66 |
+
metric_inputs[feature_name] = data[feature_name]
|
67 |
+
return metric_inputs
|
68 |
+
|
69 |
+
|
70 |
+
def parse_test_cases(test_cases, feature_names, input_types):
|
71 |
+
"""
|
72 |
+
Parses test cases to be used in gradio Dataframe. Note that an apostrophe is added
|
73 |
+
to strings to follow the format in json.
|
74 |
+
"""
|
75 |
+
if len(test_cases) == 0:
|
76 |
+
return None
|
77 |
+
examples = []
|
78 |
+
for test_case in test_cases:
|
79 |
+
parsed_cases = []
|
80 |
+
for feat, input_type in zip(feature_names, input_types):
|
81 |
+
if input_type == "json":
|
82 |
+
parsed_cases.append([str(element) for element in test_case[feat]])
|
83 |
+
elif input_type == "str":
|
84 |
+
parsed_cases.append(['"' + element + '"' for element in test_case[feat]])
|
85 |
+
else:
|
86 |
+
parsed_cases.append(test_case[feat])
|
87 |
+
examples.append([list(i) for i in zip(*parsed_cases)])
|
88 |
+
return examples
|
89 |
+
|
90 |
+
|
91 |
+
def launch_gradio_widget2(metric):
|
92 |
+
"""Launches `metric` widget with Gradio."""
|
93 |
+
|
94 |
+
try:
|
95 |
+
import gradio as gr
|
96 |
+
except ImportError as error:
|
97 |
+
logging.error("To create a metric widget with Gradio make sure gradio is installed.")
|
98 |
+
raise error
|
99 |
+
|
100 |
+
local_path = Path(sys.path[0])
|
101 |
+
# if there are several input types, use first as default.
|
102 |
+
if isinstance(metric.features, list):
|
103 |
+
(feature_names, feature_types) = zip(*metric.features[0].items())
|
104 |
+
else:
|
105 |
+
(feature_names, feature_types) = zip(*metric.features.items())
|
106 |
+
gradio_input_types = infer_gradio_input_types(feature_types)
|
107 |
+
|
108 |
+
def compute(data):
|
109 |
+
return metric.compute(**parse_gradio_data(data, gradio_input_types))
|
110 |
+
|
111 |
+
iface = gr.Interface(
|
112 |
+
fn=compute,
|
113 |
+
inputs=gr.Dataframe(
|
114 |
+
headers=feature_names,
|
115 |
+
col_count=len(feature_names),
|
116 |
+
row_count=1,
|
117 |
+
datatype=json_to_string_type(gradio_input_types),
|
118 |
+
),
|
119 |
+
outputs=gr.Textbox(label=metric.name),
|
120 |
+
description=(
|
121 |
+
metric.info.description + "\nIf this is a text-based metric, make sure to wrap you input in double quotes."
|
122 |
+
" Alternatively you can use a JSON-formatted list as input."
|
123 |
+
),
|
124 |
+
title=f"Metric: {metric.name}",
|
125 |
+
article=parse_readme(local_path / "README.md"),
|
126 |
+
# TODO: load test cases and use them to populate examples
|
127 |
+
# examples=[parse_test_cases(test_cases, feature_names, gradio_input_types)]
|
128 |
+
)
|
129 |
+
|
130 |
+
iface.launch()
|
preprocessing.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import chain
|
2 |
+
from random import choice
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
from datasets import Dataset
|
6 |
+
|
7 |
+
|
8 |
+
def adjust_predictions(refs, preds, choices):
|
9 |
+
"""Adjust predictions to match the length of references with either a special token or random choice."""
|
10 |
+
adjusted_preds = []
|
11 |
+
for ref, pred in zip(refs, preds):
|
12 |
+
if len(pred) < len(ref):
|
13 |
+
missing_count = len(ref) - len(pred)
|
14 |
+
pred.extend([choice(choices) for _ in range(missing_count)])
|
15 |
+
adjusted_preds.append(pred)
|
16 |
+
return adjusted_preds
|
17 |
+
|
18 |
+
|
19 |
+
def extract_aspects(data, specific_key, specific_val):
|
20 |
+
"""Extracts and returns a list of specified aspect details from the nested 'aspects' data."""
|
21 |
+
return [item[specific_key][specific_val] for item in data]
|
22 |
+
|
23 |
+
|
24 |
+
def absa_term_preprocess(references, predictions, subtask_key, subtask_value):
|
25 |
+
"""
|
26 |
+
Preprocess the terms and polarities for aspect-based sentiment analysis.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
references (List[Dict]): A list of dictionaries containing the actual terms and polarities under 'aspects'.
|
30 |
+
predictions (List[Dict]): A list of dictionaries containing predicted aspect categories to terms and their sentiments.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
Tuple[List[str], List[str], List[str], List[str]]: A tuple containing lists of true aspect terms,
|
34 |
+
adjusted predicted aspect terms, true polarities, and adjusted predicted polarities.
|
35 |
+
"""
|
36 |
+
|
37 |
+
# Extract aspect terms and polarities
|
38 |
+
truth_aspect_terms = extract_aspects(references, subtask_key, subtask_value)
|
39 |
+
pred_aspect_terms = extract_aspects(predictions, subtask_key, subtask_value)
|
40 |
+
truth_polarities = extract_aspects(references, subtask_key, "polarity")
|
41 |
+
pred_polarities = extract_aspects(predictions, subtask_key, "polarity")
|
42 |
+
|
43 |
+
# Define adjustment parameters
|
44 |
+
special_token = "NONE" # For missing aspect terms
|
45 |
+
sentiment_choices = [
|
46 |
+
"positive",
|
47 |
+
"negative",
|
48 |
+
"neutral",
|
49 |
+
"conflict",
|
50 |
+
] # For missing polarities
|
51 |
+
|
52 |
+
# Adjust the predictions to match the length of references
|
53 |
+
adjusted_pred_terms = adjust_predictions(
|
54 |
+
truth_aspect_terms, pred_aspect_terms, [special_token]
|
55 |
+
)
|
56 |
+
adjusted_pred_polarities = adjust_predictions(
|
57 |
+
truth_polarities, pred_polarities, sentiment_choices
|
58 |
+
)
|
59 |
+
|
60 |
+
return (
|
61 |
+
flatten_list(truth_aspect_terms),
|
62 |
+
flatten_list(adjusted_pred_terms),
|
63 |
+
flatten_list(truth_polarities),
|
64 |
+
flatten_list(adjusted_pred_polarities),
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
def flatten_list(nested_list):
|
69 |
+
"""Flatten a nested list into a single-level list."""
|
70 |
+
return list(chain.from_iterable(nested_list))
|
71 |
+
|
72 |
+
|
73 |
+
def extract_pred_terms(
|
74 |
+
all_predictions: List[Dict[str, Dict[str, str]]]
|
75 |
+
) -> List[List]:
|
76 |
+
"""Extract and organize predicted terms from the sentiment analysis results."""
|
77 |
+
pred_aspect_terms = []
|
78 |
+
for pred in all_predictions:
|
79 |
+
terms = [term for cat in pred.values() for term in cat.keys()]
|
80 |
+
pred_aspect_terms.append(terms)
|
81 |
+
return pred_aspect_terms
|
82 |
+
|
83 |
+
|
84 |
+
def merge_aspects_and_categories(aspects, categories):
|
85 |
+
result = []
|
86 |
+
|
87 |
+
# Assuming both lists are of the same length and corresponding indices match
|
88 |
+
for aspect, category in zip(aspects, categories):
|
89 |
+
combined_entry = {
|
90 |
+
"aspects": {"term": [], "polarity": []},
|
91 |
+
"category": {"category": [], "polarity": []},
|
92 |
+
}
|
93 |
+
|
94 |
+
# Process aspect entries
|
95 |
+
for cat_key, terms_dict in aspect.items():
|
96 |
+
for term, polarity in terms_dict.items():
|
97 |
+
combined_entry["aspects"]["term"].append(term)
|
98 |
+
combined_entry["aspects"]["polarity"].append(polarity)
|
99 |
+
|
100 |
+
# Add category details based on the aspect's key if available in categories
|
101 |
+
if cat_key in category:
|
102 |
+
combined_entry["category"]["category"].append(cat_key)
|
103 |
+
combined_entry["category"]["polarity"].append(
|
104 |
+
category[cat_key]
|
105 |
+
)
|
106 |
+
|
107 |
+
# Ensure all keys in category are accounted for
|
108 |
+
for cat_key, polarity in category.items():
|
109 |
+
if cat_key not in combined_entry["category"]["category"]:
|
110 |
+
combined_entry["category"]["category"].append(cat_key)
|
111 |
+
combined_entry["category"]["polarity"].append(polarity)
|
112 |
+
|
113 |
+
result.append(combined_entry)
|
114 |
+
|
115 |
+
return result
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
evaluate
|
2 |
+
datasets
|
3 |
+
scikit-learn
|
4 |
+
gradio
|