File size: 1,183 Bytes
ea90e06 e683309 ea90e06 a09216c caa1fd8 a09216c ea90e06 c59a4f8 ea90e06 fa1c92c ea90e06 454fde7 ea90e06 ccc474b 454fde7 ea90e06 fa1c92c ea90e06 ccc474b ea90e06 caa1fd8 ea90e06 a09216c ccc474b c871b03 ccc474b 7078b67 cd7dcf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
import transformers
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForMaskedLM
import pandas as pd
tokenizer = AutoTokenizer.from_pretrained("moussaKam/AraBART", padding= True, truncation=True, max_length=128)
model = AutoModelForMaskedLM.from_pretrained("moussaKam/AraBART")
#@st.cache
def next_word(text, pipe):
res_dict= {
'Word':[],
'Score':[],
}
for e in pipe(text):
res_dict['Word'].append(e['token_str'])
res_dict['Score'].append(e['score'])
return res_dict
st.title("Predict Next Word")
st.write("Expand your query by leveraging various models")
default_value = "التاريخ هو تحليل و"
# sent is the the variable holding the user's input
sent = st.text_area("Text", default_value, height=30)
sent += ' <mask>'
pipe = pipeline("fill-mask", tokenizer=tokenizer, model=model)
dict_next_words = next_word(sent, pipe)
df = pd.DataFrame.from_dict(dict_next_words)
df.reset_index(drop=True, inplace=True)
chart_data = pd.DataFrame(
np.random.randn(50, 3),
columns=["a", "b", "c"])
st.bar_chart(chart_data)
#st.dataframe(df)
#st.bar_chart(df)
#st.table(df) |