AraJARIR / app.py
Hamda's picture
Update app.py
05d75cd
raw
history blame
3.41 kB
import streamlit as st
import transformers
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForMaskedLM
import pandas as pd
import string
st.title("المساعدة اللغوية في التنبؤ بالمتلازمات والمتصاحبات وتصحيحها")
default_value = "بيعت الأسلحة في السوق"
# sent is the variable holding the user's input
sent = st.text_area('مدخل',default_value)
tokenizer = AutoTokenizer.from_pretrained("moussaKam/AraBART", max_length=128, padding=True, pad_to_max_length = True, truncation=True)
model = AutoModelForMaskedLM.from_pretrained("Hamda/test-1-finetuned-AraBART")
#@st.cache
if (st.button('بحث', disabled=False)):
def next_word(text, pipe):
res_dict= {
'الكلمة المقترحة':[],
'العلامة':[],
}
for e in pipe(text):
if all(c not in list(string.punctuation) for c in e['token_str']):
res_dict['الكلمة المقترحة'].append(e['token_str'])
res_dict['العلامة'].append(e['score'])
return res_dict
text_st = sent+ ' <mask>'
pipe = pipeline("fill-mask", tokenizer=tokenizer, model=model, top_k=10)
dict_next_words = next_word(text_st, pipe)
df = pd.DataFrame.from_dict(dict_next_words)
df.reset_index(drop=True, inplace=True)
st.dataframe(df)
if (st.button('استعمال الرسم البياني', disabled=False)):
VocMap = './voc.csv'
ScoreMap = './BM25.csv'
#@st.cache
def reading_df(path1, path2):
df_voc = pd.read_csv(path1, delimiter='\t')
df_graph = pd.read_csv(path2, delimiter='\t')
df_graph.set_index(['ID1','ID2'], inplace=True)
df_gr = pd.read_csv(ScoreMap, delimiter='\t')
df_gr.set_index(['ID1'], inplace=True)
return df_voc, df_graph, df_gr
df3, df_g, df_in = reading_df(VocMap, ScoreMap)
#@st.cache
def Query2id(voc, query):
return [voc.index[voc['word'] == word].values[0] for word in query.split()]
id_list = Query2id(df3, sent)
#@st.cache
def setQueriesVoc(df, id_list):
res = []
for e in id_list:
res.extend(list(df.loc[e]['ID2'].values))
return list(set(res))
L = setQueriesVoc(df_in, id_list)
@st.cache
def compute_score(L_terms, id_l):
tmt = {}
for nc in L_terms:
score = 0.0
temp = []
for ni in id_l:
try:
score = score + df_g.loc[(ni, nc),'score']
except KeyError:
continue
key = df3.loc[nc].values[0]
tmt[key] = score
return tmt
tmt = compute_score(L, id_list)
exp_terms = []
t_li = tmt.values()
tmexp = sorted(tmt.items(), key=lambda x: x[1], reverse=True)
i = 0
dict_res = {'الكلمة المقترحة':[],
'العلامة':[]}
for key, value in tmexp:
new_score=((value-min(t_li))/(max(t_li)-min(t_li)))-0.0001
dict_res['العلامة'].append(str(new_score)[:6])
dict_res['الكلمة المقترحة'].append(key)
i+=1
if (i==10):
break
res_df = pd.DataFrame.from_dict(dict_res)
res_df.index += 1
st.dataframe(res_df)
#st.table(df)