AraJARIR / app.py
Hamda's picture
Update app.py
5d2b0fe
raw
history blame
1.39 kB
import streamlit as st
import transformers
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForMaskedLM
import pandas as pd
import numpy as np
import string
tokenizer = AutoTokenizer.from_pretrained("moussaKam/AraBART", max_length=128, padding=True, pad_to_max_length = True, truncation=True)
model = AutoModelForMaskedLM.from_pretrained("Hamda/test-1-finetuned-AraBART")
#@st.cache
def next_word(text, pipe):
res_dict= {
'Word':[],
'Score':[],
}
for e in pipe(text):
if all(c not in list(string.punctuation) for c in e['token_str']):
res_dict['Word'].append(e['token_str'])
res_dict['Score'].append(e['score'])
return res_dict
st.title("المساعدة اللغوية في التنبؤ بالمتلازمات والمتصاحبات والتعبيرات الاصطلاحية وتصحيحها")
default_value = "بيعت الأسلحة في السوق"
# sent is the variable holding the user's input
sent = st.text_area("مدخل", default_value, height=20)
st.checkbox('استعمال الرسم البياني', value=False)
text_st = sent+ ' <mask>'
pipe = pipeline("fill-mask", tokenizer=tokenizer, model=model, top_k=10)
dict_next_words = next_word(text_st, pipe)
df = pd.DataFrame.from_dict(dict_next_words)
df.reset_index(drop=True, inplace=True)
st.dataframe(df)
#st.table(df)