AraJARIR / app.py
Hamda's picture
Update app.py
dee9089
raw
history blame
1.16 kB
import streamlit as st
import transformers
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForMaskedLM
import pandas as pd
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("moussaKam/AraBART", padding= True, truncation=True, max_length=128)
model = AutoModelForMaskedLM.from_pretrained("moussaKam/AraBART")
#@st.cache
def next_word(text, pipe):
res_dict= {
'Word':[],
'Score':[],
}
for e in pipe(text):
res_dict['Word'].append(e['token_str'])
res_dict['Score'].append(e['score'])
return res_dict
st.title("Predict Next Word")
st.write("Expand your query by leveraging various models")
default_value = "بيعت الأسلحة في السوق"
# sent is the variable holding the user's input
sent = st.text_area("Input", default_value, height=30)
if len(sent)>20:
text_st = sent[-20:]
text_st += ' <mask>'
else:
text_st = sent+ ' <mask>'
pipe = pipeline("fill-mask", tokenizer=tokenizer, model=model)
dict_next_words = next_word(text_st, pipe)
df = pd.DataFrame.from_dict(dict_next_words)
df.reset_index(drop=True, inplace=True)
st.dataframe(df)
#st.table(df)