import streamlit as st import transformers from transformers import pipeline from transformers import AutoTokenizer, AutoModelForMaskedLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("moussaKam/AraBART", padding= True, truncation=True, max_length=128) model = AutoModelForMaskedLM.from_pretrained("moussaKam/AraBART") #@st.cache def next_word(text, pipe): res_dict= { 'Word':[], 'Score':[], } for e in pipe(text): res_dict['Word'].append(e['token_str']) res_dict['Score'].append(e['score']) return res_dict st.title("Predict Next Word") st.write("Expand your query by leveraging various models") default_value = "التاريخ هو تحليل و" # sent is the the variable holding the user's input sent = st.text_area("Text", default_value, height=30) sent += ' ' pipe = pipeline("fill-mask", tokenizer=tokenizer, model=model) dict_next_words = next_word(sent, pipe) df = pd.DataFrame.from_dict(dict_next_words) df.reset_index(drop=True, inplace=True) chart_data = pd.DataFrame( np.random.randn(50, 3), columns=["a", "b", "c"]) st.bar_chart(chart_data) #st.dataframe(df) #st.bar_chart(df) #st.table(df)