Spaces:
Running
Running
# Copyright Niantic 2019. Patent Pending. All rights reserved. | |
# | |
# This software is licensed under the terms of the Monodepth2 licence | |
# which allows for non-commercial use only, the full terms of which are made | |
# available in the LICENSE file. | |
from __future__ import absolute_import, division, print_function | |
import torch | |
import torch.nn as nn | |
class PoseCNN(nn.Module): | |
def __init__(self, num_input_frames): | |
super(PoseCNN, self).__init__() | |
self.num_input_frames = num_input_frames | |
self.convs = {} | |
self.convs[0] = nn.Conv2d(3 * num_input_frames, 16, 7, 2, 3) | |
self.convs[1] = nn.Conv2d(16, 32, 5, 2, 2) | |
self.convs[2] = nn.Conv2d(32, 64, 3, 2, 1) | |
self.convs[3] = nn.Conv2d(64, 128, 3, 2, 1) | |
self.convs[4] = nn.Conv2d(128, 256, 3, 2, 1) | |
self.convs[5] = nn.Conv2d(256, 256, 3, 2, 1) | |
self.convs[6] = nn.Conv2d(256, 256, 3, 2, 1) | |
self.pose_conv = nn.Conv2d(256, 6 * (num_input_frames - 1), 1) | |
self.num_convs = len(self.convs) | |
self.relu = nn.ReLU(True) | |
self.net = nn.ModuleList(list(self.convs.values())) | |
def forward(self, out): | |
for i in range(self.num_convs): | |
out = self.convs[i](out) | |
out = self.relu(out) | |
out = self.pose_conv(out) | |
out = out.mean(3).mean(2) | |
out = 0.01 * out.view(-1, self.num_input_frames - 1, 1, 6) | |
axisangle = out[..., :3] | |
translation = out[..., 3:] | |
return axisangle, translation | |