File size: 13,894 Bytes
98d025d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c02161
98d025d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c02161
98d025d
 
 
 
6c02161
98d025d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c02161
98d025d
 
 
 
 
6c02161
98d025d
 
 
 
 
6c02161
 
98d025d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
import subprocess

# Install flash attention
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

import spaces
import os
import torch
import numpy as np
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
import uuid
from tqdm import tqdm
from einops import rearrange
import gradio as gr
import re
from collections import Counter
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched

# Initialize global variables and models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
codectool_stage2 = CodecManipulator("xcodec", 0, 8)

# Load models once at startup
def load_models():
    # Stage 1 Model
    stage1_model = AutoModelForCausalLM.from_pretrained(
        "m-a-p/YuE-s1-7B-anneal-en-cot",
        torch_dtype=torch.bfloat16,
        attn_implementation="flash_attention_2"
    ).to(device)
    stage1_model.eval()

    # Stage 2 Model
    stage2_model = AutoModelForCausalLM.from_pretrained(
        "m-a-p/YuE-s2-1B-general",
        torch_dtype=torch.float16,
        attn_implementation="flash_attention_2"
    ).to(device)
    stage2_model.eval()

    # Codec Model
    model_config = OmegaConf.load('./xcodec_mini_infer/final_ckpt/config.yaml')
    codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
    parameter_dict = torch.load('./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', map_location='cpu')
    codec_model.load_state_dict(parameter_dict['codec_model'])
    codec_model.eval()

    return stage1_model, stage2_model, codec_model

stage1_model, stage2_model, codec_model = load_models()

# Helper functions
def split_lyrics(lyrics):
    pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
    segments = re.findall(pattern, lyrics, re.DOTALL)
    return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]

def load_audio_mono(filepath, sampling_rate=16000):
    audio, sr = torchaudio.load(filepath)
    audio = torch.mean(audio, dim=0, keepdim=True)  # Convert to mono
    if sr != sampling_rate:
        resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
        audio = resampler(audio)
    return audio

def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
    folder_path = os.path.dirname(path)
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    limit = 0.99
    max_val = wav.abs().max()
    wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
    torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)

# Stage 1 Generation
def stage1_generate(genres, lyrics_text, use_audio_prompt, audio_prompt_path, prompt_start_time, prompt_end_time):
    structured_lyrics = split_lyrics(lyrics_text)
    full_lyrics = "\n".join(structured_lyrics)
    prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] + structured_lyrics

    random_id = str(uuid.uuid4())
    output_dir = os.path.join("./output", random_id)
    os.makedirs(output_dir, exist_ok=True)

    stage1_output_set = []
    for i, p in enumerate(tqdm(prompt_texts)):
        section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
        guidance_scale = 1.5 if i <= 1 else 1.2

        if i == 0:
            continue

        if i == 1 and use_audio_prompt:
            audio_prompt = load_audio_mono(audio_prompt_path)
            audio_prompt.unsqueeze_(0)
            with torch.no_grad():
                raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
            raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
            audio_prompt_codec = codectool.npy2ids(raw_codes[0])[int(prompt_start_time * 50): int(prompt_end_time * 50)]
            audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
            sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
            head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
        else:
            head_id = mmtokenizer.tokenize(prompt_texts[0])

        prompt_ids = head_id + mmtokenizer.tokenize("[start_of_segment]") + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
        prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)

        with torch.no_grad():
            output_seq = stage1_model.generate(
                input_ids=prompt_ids,
                max_new_tokens=3000,
                min_new_tokens=100,
                do_sample=True,
                top_p=0.93,
                temperature=1.0,
                repetition_penalty=1.2,
                eos_token_id=mmtokenizer.eoa,
                pad_token_id=mmtokenizer.eoa,
            )

        if i > 1:
            raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, prompt_ids.shape[-1]:]], dim=1)
        else:
            raw_output = output_seq

    # Save Stage 1 outputs
    ids = raw_output[0].cpu().numpy()
    soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
    eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()

    vocals = []
    instrumentals = []
    for i in range(len(soa_idx)):
        codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
        if codec_ids[0] == 32016:
            codec_ids = codec_ids[1:]
        codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
        vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
        vocals.append(vocals_ids)
        instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
        instrumentals.append(instrumentals_ids)

    vocals = np.concatenate(vocals, axis=1)
    instrumentals = np.concatenate(instrumentals, axis=1)
    vocal_save_path = os.path.join(output_dir, f"vocal_{random_id}.npy")
    inst_save_path = os.path.join(output_dir, f"instrumental_{random_id}.npy")
    np.save(vocal_save_path, vocals)
    np.save(inst_save_path, instrumentals)
    stage1_output_set.append(vocal_save_path)
    stage1_output_set.append(inst_save_path)

    return stage1_output_set, output_dir

# Stage 2 Generation
def stage2_generate(model, prompt, batch_size=16):
    codec_ids = codectool.unflatten(prompt, n_quantizer=1)
    codec_ids = codectool.offset_tok_ids(
        codec_ids,
        global_offset=codectool.global_offset,
        codebook_size=codectool.codebook_size,
        num_codebooks=codectool.num_codebooks,
    ).astype(np.int32)

    if batch_size > 1:
        codec_list = []
        for i in range(batch_size):
            idx_begin = i * 300
            idx_end = (i + 1) * 300
            codec_list.append(codec_ids[:, idx_begin:idx_end])
        codec_ids = np.concatenate(codec_list, axis=0)
        prompt_ids = np.concatenate(
            [
                np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
                codec_ids,
                np.tile([mmtokenizer.stage_2], (batch_size, 1)),
            ],
            axis=1
        )
    else:
        prompt_ids = np.concatenate([
            np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
            codec_ids.flatten(),
            np.array([mmtokenizer.stage_2])
        ]).astype(np.int32)
        prompt_ids = prompt_ids[np.newaxis, ...]

    codec_ids = torch.as_tensor(codec_ids).to(device)
    prompt_ids = torch.as_tensor(prompt_ids).to(device)
    len_prompt = prompt_ids.shape[-1]

    block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)])

    for frames_idx in range(codec_ids.shape[1]):
        cb0 = codec_ids[:, frames_idx:frames_idx + 1]
        prompt_ids = torch.cat([prompt_ids, cb0], dim=1)
        input_ids = prompt_ids

        with torch.no_grad():
            stage2_output = model.generate(
                input_ids=input_ids,
                min_new_tokens=7,
                max_new_tokens=7,
                eos_token_id=mmtokenizer.eoa,
                pad_token_id=mmtokenizer.eoa,
                logits_processor=block_list,
            )

        assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1] - prompt_ids.shape[1]}"
        prompt_ids = stage2_output

    if batch_size > 1:
        output = prompt_ids.cpu().numpy()[:, len_prompt:]
        output_list = [output[i] for i in range(batch_size)]
        output = np.concatenate(output_list, axis=0)
    else:
        output = prompt_ids[0].cpu().numpy()[len_prompt:]

    return output

def stage2_inference(model, stage1_output_set, output_dir, batch_size=4):
    stage2_result = []
    for i in tqdm(range(len(stage1_output_set))):
        output_filename = os.path.join(output_dir, os.path.basename(stage1_output_set[i]))
        if os.path.exists(output_filename):
            continue

        prompt = np.load(stage1_output_set[i]).astype(np.int32)
        output_duration = prompt.shape[-1] // 50 // 6 * 6
        num_batch = output_duration // 6

        if num_batch <= batch_size:
            output = stage2_generate(model, prompt[:, :output_duration * 50], batch_size=num_batch)
        else:
            segments = []
            num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
            for seg in range(num_segments):
                start_idx = seg * batch_size * 300
                end_idx = min((seg + 1) * batch_size * 300, output_duration * 50)
                current_batch_size = batch_size if seg != num_segments - 1 or num_batch % batch_size == 0 else num_batch % batch_size
                segment = stage2_generate(model, prompt[:, start_idx:end_idx], batch_size=current_batch_size)
                segments.append(segment)
            output = np.concatenate(segments, axis=0)

        if output_duration * 50 != prompt.shape[-1]:
            ending = stage2_generate(model, prompt[:, output_duration * 50:], batch_size=1)
            output = np.concatenate([output, ending], axis=0)
        output = codectool_stage2.ids2npy(output)

        fixed_output = copy.deepcopy(output)
        for i, line in enumerate(output):
            for j, element in enumerate(line):
                if element < 0 or element > 1023:
                    counter = Counter(line)
                    most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
                    fixed_output[i, j] = most_frequant
        np.save(output_filename, fixed_output)
        stage2_result.append(output_filename)
    return stage2_result

# Main Gradio function
@spaces.GPU()
def generate_music(genres, lyrics_text, use_audio_prompt, audio_prompt, start_time, end_time, progress=gr.Progress()):
    progress(0.1, "Running Stage 1 Generation...")
    stage1_output_set, output_dir = stage1_generate(genres, lyrics_text, use_audio_prompt, audio_prompt, start_time, end_time)

    progress(0.6, "Running Stage 2 Refinement...")
    stage2_result = stage2_inference(stage2_model, stage1_output_set, output_dir)

    progress(0.8, "Processing Audio...")
    vocal_decoder, inst_decoder = build_codec_model('./xcodec_mini_infer/decoders/config.yaml', './xcodec_mini_infer/decoders/decoder_131000.pth', './xcodec_mini_infer/decoders/decoder_151000.pth')
    vocoder_output_dir = os.path.join(output_dir, "vocoder")
    os.makedirs(vocoder_output_dir, exist_ok=True)

    for npy in stage2_result:
        if 'instrumental' in npy:
            process_audio(npy, os.path.join(vocoder_output_dir, 'instrumental.mp3'), False, None, inst_decoder, codec_model)
        else:
            process_audio(npy, os.path.join(vocoder_output_dir, 'vocal.mp3'), False, None, vocal_decoder, codec_model)

    return [
        os.path.join(vocoder_output_dir, 'instrumental.mp3'),
        os.path.join(vocoder_output_dir, 'vocal.mp3')
    ]

# Gradio UI
with gr.Blocks(title="AI Music Generation") as demo:
    gr.Markdown("# 🎡 AI Music Generation Pipeline")
    
    with gr.Row():
        with gr.Column():
            genre_input = gr.Textbox(label="Genre Tags", placeholder="e.g., Pop, Happy, Female Vocal")
            lyrics_input = gr.Textbox(label="Lyrics", lines=10, placeholder="Enter lyrics with segments...")
            use_audio_prompt = gr.Checkbox(label="Use Audio Prompt")
            audio_input = gr.Audio(label="Reference Audio", type="filepath", visible=False)
            start_time = gr.Number(label="Start Time (sec)", value=0.0, visible=False)
            end_time = gr.Number(label="End Time (sec)", value=30.0, visible=False)
            
            generate_btn = gr.Button("Generate Music", variant="primary")
            
        with gr.Column():
            vocal_output = gr.Audio(label="Vocal Track", interactive=False)
            inst_output = gr.Audio(label="Instrumental Track", interactive=False)

    use_audio_prompt.change(
        lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
        inputs=use_audio_prompt,
        outputs=[audio_input, start_time, end_time]
    )

    generate_btn.click(
        generate_music,
        inputs=[genre_input, lyrics_input, use_audio_prompt, audio_input, start_time, end_time],
        outputs=[vocal_output, inst_output]
    )

if __name__ == "__main__":
    demo.launch()