Spaces:
Runtime error
Runtime error
File size: 13,894 Bytes
98d025d 6c02161 98d025d 6c02161 98d025d 6c02161 98d025d 6c02161 98d025d 6c02161 98d025d 6c02161 98d025d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import os
import subprocess
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import spaces
import os
import torch
import numpy as np
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
import uuid
from tqdm import tqdm
from einops import rearrange
import gradio as gr
import re
from collections import Counter
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
# Initialize global variables and models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
codectool_stage2 = CodecManipulator("xcodec", 0, 8)
# Load models once at startup
def load_models():
# Stage 1 Model
stage1_model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2"
).to(device)
stage1_model.eval()
# Stage 2 Model
stage2_model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s2-1B-general",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2"
).to(device)
stage2_model.eval()
# Codec Model
model_config = OmegaConf.load('./xcodec_mini_infer/final_ckpt/config.yaml')
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load('./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
return stage1_model, stage2_model, codec_model
stage1_model, stage2_model, codec_model = load_models()
# Helper functions
def split_lyrics(lyrics):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
audio = torch.mean(audio, dim=0, keepdim=True) # Convert to mono
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# Stage 1 Generation
def stage1_generate(genres, lyrics_text, use_audio_prompt, audio_prompt_path, prompt_start_time, prompt_end_time):
structured_lyrics = split_lyrics(lyrics_text)
full_lyrics = "\n".join(structured_lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] + structured_lyrics
random_id = str(uuid.uuid4())
output_dir = os.path.join("./output", random_id)
os.makedirs(output_dir, exist_ok=True)
stage1_output_set = []
for i, p in enumerate(tqdm(prompt_texts)):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <= 1 else 1.2
if i == 0:
continue
if i == 1 and use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
audio_prompt_codec = codectool.npy2ids(raw_codes[0])[int(prompt_start_time * 50): int(prompt_end_time * 50)]
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + mmtokenizer.tokenize("[start_of_segment]") + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
with torch.no_grad():
output_seq = stage1_model.generate(
input_ids=prompt_ids,
max_new_tokens=3000,
min_new_tokens=100,
do_sample=True,
top_p=0.93,
temperature=1.0,
repetition_penalty=1.2,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
)
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, prompt_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
# Save Stage 1 outputs
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
vocals = []
instrumentals = []
for i in range(len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(output_dir, f"vocal_{random_id}.npy")
inst_save_path = os.path.join(output_dir, f"instrumental_{random_id}.npy")
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
return stage1_output_set, output_dir
# Stage 2 Generation
def stage2_generate(model, prompt, batch_size=16):
codec_ids = codectool.unflatten(prompt, n_quantizer=1)
codec_ids = codectool.offset_tok_ids(
codec_ids,
global_offset=codectool.global_offset,
codebook_size=codectool.codebook_size,
num_codebooks=codectool.num_codebooks,
).astype(np.int32)
if batch_size > 1:
codec_list = []
for i in range(batch_size):
idx_begin = i * 300
idx_end = (i + 1) * 300
codec_list.append(codec_ids[:, idx_begin:idx_end])
codec_ids = np.concatenate(codec_list, axis=0)
prompt_ids = np.concatenate(
[
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
codec_ids,
np.tile([mmtokenizer.stage_2], (batch_size, 1)),
],
axis=1
)
else:
prompt_ids = np.concatenate([
np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
codec_ids.flatten(),
np.array([mmtokenizer.stage_2])
]).astype(np.int32)
prompt_ids = prompt_ids[np.newaxis, ...]
codec_ids = torch.as_tensor(codec_ids).to(device)
prompt_ids = torch.as_tensor(prompt_ids).to(device)
len_prompt = prompt_ids.shape[-1]
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)])
for frames_idx in range(codec_ids.shape[1]):
cb0 = codec_ids[:, frames_idx:frames_idx + 1]
prompt_ids = torch.cat([prompt_ids, cb0], dim=1)
input_ids = prompt_ids
with torch.no_grad():
stage2_output = model.generate(
input_ids=input_ids,
min_new_tokens=7,
max_new_tokens=7,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=block_list,
)
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1] - prompt_ids.shape[1]}"
prompt_ids = stage2_output
if batch_size > 1:
output = prompt_ids.cpu().numpy()[:, len_prompt:]
output_list = [output[i] for i in range(batch_size)]
output = np.concatenate(output_list, axis=0)
else:
output = prompt_ids[0].cpu().numpy()[len_prompt:]
return output
def stage2_inference(model, stage1_output_set, output_dir, batch_size=4):
stage2_result = []
for i in tqdm(range(len(stage1_output_set))):
output_filename = os.path.join(output_dir, os.path.basename(stage1_output_set[i]))
if os.path.exists(output_filename):
continue
prompt = np.load(stage1_output_set[i]).astype(np.int32)
output_duration = prompt.shape[-1] // 50 // 6 * 6
num_batch = output_duration // 6
if num_batch <= batch_size:
output = stage2_generate(model, prompt[:, :output_duration * 50], batch_size=num_batch)
else:
segments = []
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
for seg in range(num_segments):
start_idx = seg * batch_size * 300
end_idx = min((seg + 1) * batch_size * 300, output_duration * 50)
current_batch_size = batch_size if seg != num_segments - 1 or num_batch % batch_size == 0 else num_batch % batch_size
segment = stage2_generate(model, prompt[:, start_idx:end_idx], batch_size=current_batch_size)
segments.append(segment)
output = np.concatenate(segments, axis=0)
if output_duration * 50 != prompt.shape[-1]:
ending = stage2_generate(model, prompt[:, output_duration * 50:], batch_size=1)
output = np.concatenate([output, ending], axis=0)
output = codectool_stage2.ids2npy(output)
fixed_output = copy.deepcopy(output)
for i, line in enumerate(output):
for j, element in enumerate(line):
if element < 0 or element > 1023:
counter = Counter(line)
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
fixed_output[i, j] = most_frequant
np.save(output_filename, fixed_output)
stage2_result.append(output_filename)
return stage2_result
# Main Gradio function
@spaces.GPU()
def generate_music(genres, lyrics_text, use_audio_prompt, audio_prompt, start_time, end_time, progress=gr.Progress()):
progress(0.1, "Running Stage 1 Generation...")
stage1_output_set, output_dir = stage1_generate(genres, lyrics_text, use_audio_prompt, audio_prompt, start_time, end_time)
progress(0.6, "Running Stage 2 Refinement...")
stage2_result = stage2_inference(stage2_model, stage1_output_set, output_dir)
progress(0.8, "Processing Audio...")
vocal_decoder, inst_decoder = build_codec_model('./xcodec_mini_infer/decoders/config.yaml', './xcodec_mini_infer/decoders/decoder_131000.pth', './xcodec_mini_infer/decoders/decoder_151000.pth')
vocoder_output_dir = os.path.join(output_dir, "vocoder")
os.makedirs(vocoder_output_dir, exist_ok=True)
for npy in stage2_result:
if 'instrumental' in npy:
process_audio(npy, os.path.join(vocoder_output_dir, 'instrumental.mp3'), False, None, inst_decoder, codec_model)
else:
process_audio(npy, os.path.join(vocoder_output_dir, 'vocal.mp3'), False, None, vocal_decoder, codec_model)
return [
os.path.join(vocoder_output_dir, 'instrumental.mp3'),
os.path.join(vocoder_output_dir, 'vocal.mp3')
]
# Gradio UI
with gr.Blocks(title="AI Music Generation") as demo:
gr.Markdown("# π΅ AI Music Generation Pipeline")
with gr.Row():
with gr.Column():
genre_input = gr.Textbox(label="Genre Tags", placeholder="e.g., Pop, Happy, Female Vocal")
lyrics_input = gr.Textbox(label="Lyrics", lines=10, placeholder="Enter lyrics with segments...")
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt")
audio_input = gr.Audio(label="Reference Audio", type="filepath", visible=False)
start_time = gr.Number(label="Start Time (sec)", value=0.0, visible=False)
end_time = gr.Number(label="End Time (sec)", value=30.0, visible=False)
generate_btn = gr.Button("Generate Music", variant="primary")
with gr.Column():
vocal_output = gr.Audio(label="Vocal Track", interactive=False)
inst_output = gr.Audio(label="Instrumental Track", interactive=False)
use_audio_prompt.change(
lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
inputs=use_audio_prompt,
outputs=[audio_input, start_time, end_time]
)
generate_btn.click(
generate_music,
inputs=[genre_input, lyrics_input, use_audio_prompt, audio_input, start_time, end_time],
outputs=[vocal_output, inst_output]
)
if __name__ == "__main__":
demo.launch() |