Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import ImageFilter, Image
|
3 |
+
from transformers import AutoModelForZeroShotImageClassification, AutoProcessor
|
4 |
+
import torch
|
5 |
+
import requests
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
# Initialize the CLIP-ViT model
|
10 |
+
checkpoint = "openai/clip-vit-large-patch14-336"
|
11 |
+
model = AutoModelForZeroShotImageClassification.from_pretrained(checkpoint)
|
12 |
+
model = model.to(device)
|
13 |
+
|
14 |
+
processor = AutoProcessor.from_pretrained(checkpoint)
|
15 |
+
|
16 |
+
def classify_image(image, candidate_labels):
|
17 |
+
messages = []
|
18 |
+
candidate_labels = [label.strip() for label in candidate_labels.split(",")] + ["other"]
|
19 |
+
|
20 |
+
# Blur the image
|
21 |
+
image = image.filter(ImageFilter.GaussianBlur(radius=5))
|
22 |
+
|
23 |
+
# Process the image and candidate labels
|
24 |
+
inputs = processor(images=image, text=candidate_labels, return_tensors="pt", padding=True)
|
25 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
26 |
+
|
27 |
+
# Get model's output
|
28 |
+
with torch.no_grad():
|
29 |
+
outputs = model(**inputs)
|
30 |
+
|
31 |
+
logits = outputs.logits_per_image[0]
|
32 |
+
probs = logits.softmax(dim=-1).cpu().numpy()
|
33 |
+
|
34 |
+
# Organize results
|
35 |
+
results = [
|
36 |
+
{"score": score, "label": candidate_label}
|
37 |
+
for score, candidate_label in sorted(zip(probs, candidate_labels), key=lambda x: -x[0])
|
38 |
+
]
|
39 |
+
|
40 |
+
# Decision-making logic
|
41 |
+
top_label = results[0]["label"]
|
42 |
+
second_label = results[1]["label"]
|
43 |
+
|
44 |
+
# Add messages to understand the scores
|
45 |
+
messages.append(f"Top label: {top_label} with score: {results[0]['score']:.2f}")
|
46 |
+
messages.append(f"Second label: {second_label} with score: {results[1]['score']:.2f}")
|
47 |
+
|
48 |
+
# Example decision logic for specific scenarios (can be customized further)
|
49 |
+
if top_label == candidate_labels[0] and results[0]["score"] >= 0.58 and second_label != "other":
|
50 |
+
messages.append("Triggered the new 0.58 check!")
|
51 |
+
result = True
|
52 |
+
elif top_label == candidate_labels[0] and second_label in candidate_labels[:-1] and (results[0]['score'] + results[1]['score']) >= 0.90:
|
53 |
+
messages.append("Triggered the 90% combined check!")
|
54 |
+
result = True
|
55 |
+
elif top_label == candidate_labels[1] and second_label == candidate_labels[0] and (results[0]['score'] + results[1]['score']) >= 0.95:
|
56 |
+
messages.append("Triggered the 90% reverse order check!")
|
57 |
+
result = True
|
58 |
+
else:
|
59 |
+
result = False
|
60 |
+
|
61 |
+
return result, top_label, results, messages
|
62 |
+
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=classify_image,
|
65 |
+
inputs=[
|
66 |
+
gr.Image(type="pil", label="Upload an Image"),
|
67 |
+
gr.Textbox(label="Candidate Labels (comma separated)")
|
68 |
+
],
|
69 |
+
outputs=[
|
70 |
+
gr.Label(label="Result"),
|
71 |
+
gr.Textbox(label="Top Label"),
|
72 |
+
gr.Dataframe(label="Details"),
|
73 |
+
gr.Textbox(label="Messages")
|
74 |
+
],
|
75 |
+
title="General Action Classifier",
|
76 |
+
description="Upload an image and specify candidate labels to check if an action is present in the image."
|
77 |
+
)
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
iface.launch()
|