File size: 12,817 Bytes
c91d665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d86c21
 
 
c91d665
 
 
 
 
 
 
9212aa7
 
c91d665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9e82d2
 
c91d665
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SARI metric."""

from collections import Counter

import datasets
import sacrebleu
import sacremoses
from packaging import version

import evaluate


_CITATION = """\
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415},
}
"""

_DESCRIPTION = """\
SARI is a metric used for evaluating automatic text simplification systems.
The metric compares the predicted simplified sentences against the reference
and the source sentences. It explicitly measures the goodness of words that are
added, deleted and kept by the system.
Sari = (F1_add + F1_keep + P_del) / 3
where
F1_add: n-gram F1 score for add operation
F1_keep: n-gram F1 score for keep operation
P_del: n-gram precision score for delete operation
n = 4, as in the original paper.

This implementation is adapted from Tensorflow's tensor2tensor implementation [3].
It has two differences with the original GitHub [1] implementation:
  (1) Defines 0/0=1 instead of 0 to give higher scores for predictions that match
      a target exactly.
  (2) Fixes an alleged bug [2] in the keep score computation.
[1] https://github.com/cocoxu/simplification/blob/master/SARI.py
    (commit 0210f15)
[2] https://github.com/cocoxu/simplification/issues/6
[3] https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
"""


_KWARGS_DESCRIPTION = """
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences.
Args:
    sources: list of source sentences where each sentence should be a string.
    predictions: list of predicted sentences where each sentence should be a string.
    references: list of lists of reference sentences where each sentence should be a string.
Returns:
    sari: sari score
    avgkeepscore: F1_keep score
    avgdelscore: P_del score
    avgaddscore: F1_add score
Examples:
    >>> sources=["About 95 species are currently accepted ."]
    >>> predictions=["About 95 you now get in ."]
    >>> references=[["About 95 species are currently known .","About 95 species are now accepted .","95 species are now accepted ."]]
    >>> sari = evaluate.load("sari")
    >>> results = sari.compute(sources=sources, predictions=predictions, references=references)
    >>> print(results)
    {'sari': 26.953601953601954, 'keep': 22.527472527472526, 'del': 50.0, 'add': 8.333333333333332}

"""


def SARIngram(sgrams, cgrams, rgramslist, numref):
    rgramsall = [rgram for rgrams in rgramslist for rgram in rgrams]
    rgramcounter = Counter(rgramsall)

    sgramcounter = Counter(sgrams)
    sgramcounter_rep = Counter()
    for sgram, scount in sgramcounter.items():
        sgramcounter_rep[sgram] = scount * numref

    cgramcounter = Counter(cgrams)
    cgramcounter_rep = Counter()
    for cgram, ccount in cgramcounter.items():
        cgramcounter_rep[cgram] = ccount * numref

    # KEEP
    keepgramcounter_rep = sgramcounter_rep & cgramcounter_rep
    keepgramcountergood_rep = keepgramcounter_rep & rgramcounter
    keepgramcounterall_rep = sgramcounter_rep & rgramcounter

    keeptmpscore1 = 0
    keeptmpscore2 = 0
    for keepgram in keepgramcountergood_rep:
        keeptmpscore1 += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
        # Fix an alleged bug [2] in the keep score computation.
        # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
        keeptmpscore2 += keepgramcountergood_rep[keepgram]
    # Define 0/0=1 instead of 0 to give higher scores for predictions that match
    #      a target exactly.
    keepscore_precision = 1
    keepscore_recall = 1
    if len(keepgramcounter_rep) > 0:
        keepscore_precision = keeptmpscore1 / len(keepgramcounter_rep)
    if len(keepgramcounterall_rep) > 0:
        # Fix an alleged bug [2] in the keep score computation.
        # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
        keepscore_recall = keeptmpscore2 / sum(keepgramcounterall_rep.values())
    keepscore = 0
    if keepscore_precision > 0 or keepscore_recall > 0:
        keepscore = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)

    # DELETION
    delgramcounter_rep = sgramcounter_rep - cgramcounter_rep
    delgramcountergood_rep = delgramcounter_rep - rgramcounter
    delgramcounterall_rep = sgramcounter_rep - rgramcounter
    deltmpscore1 = 0
    deltmpscore2 = 0
    for delgram in delgramcountergood_rep:
        deltmpscore1 += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
        deltmpscore2 += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
    # Define 0/0=1 instead of 0 to give higher scores for predictions that match
    # a target exactly.
    delscore_precision = 1
    if len(delgramcounter_rep) > 0:
        delscore_precision = deltmpscore1 / len(delgramcounter_rep)

    # ADDITION
    addgramcounter = set(cgramcounter) - set(sgramcounter)
    addgramcountergood = set(addgramcounter) & set(rgramcounter)
    addgramcounterall = set(rgramcounter) - set(sgramcounter)

    addtmpscore = 0
    for addgram in addgramcountergood:
        addtmpscore += 1

    # Define 0/0=1 instead of 0 to give higher scores for predictions that match
    # a target exactly.
    addscore_precision = 1
    addscore_recall = 1
    if len(addgramcounter) > 0:
        addscore_precision = addtmpscore / len(addgramcounter)
    if len(addgramcounterall) > 0:
        addscore_recall = addtmpscore / len(addgramcounterall)
    addscore = 0
    if addscore_precision > 0 or addscore_recall > 0:
        addscore = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)

    return (keepscore, delscore_precision, addscore)


def SARIsent(ssent, csent, rsents):
    numref = len(rsents)

    s1grams = ssent.split(" ")
    c1grams = csent.split(" ")
    s2grams = []
    c2grams = []
    s3grams = []
    c3grams = []
    s4grams = []
    c4grams = []

    r1gramslist = []
    r2gramslist = []
    r3gramslist = []
    r4gramslist = []
    for rsent in rsents:
        r1grams = rsent.split(" ")
        r2grams = []
        r3grams = []
        r4grams = []
        r1gramslist.append(r1grams)
        for i in range(0, len(r1grams) - 1):
            if i < len(r1grams) - 1:
                r2gram = r1grams[i] + " " + r1grams[i + 1]
                r2grams.append(r2gram)
            if i < len(r1grams) - 2:
                r3gram = r1grams[i] + " " + r1grams[i + 1] + " " + r1grams[i + 2]
                r3grams.append(r3gram)
            if i < len(r1grams) - 3:
                r4gram = r1grams[i] + " " + r1grams[i + 1] + " " + r1grams[i + 2] + " " + r1grams[i + 3]
                r4grams.append(r4gram)
        r2gramslist.append(r2grams)
        r3gramslist.append(r3grams)
        r4gramslist.append(r4grams)

    for i in range(0, len(s1grams) - 1):
        if i < len(s1grams) - 1:
            s2gram = s1grams[i] + " " + s1grams[i + 1]
            s2grams.append(s2gram)
        if i < len(s1grams) - 2:
            s3gram = s1grams[i] + " " + s1grams[i + 1] + " " + s1grams[i + 2]
            s3grams.append(s3gram)
        if i < len(s1grams) - 3:
            s4gram = s1grams[i] + " " + s1grams[i + 1] + " " + s1grams[i + 2] + " " + s1grams[i + 3]
            s4grams.append(s4gram)

    for i in range(0, len(c1grams) - 1):
        if i < len(c1grams) - 1:
            c2gram = c1grams[i] + " " + c1grams[i + 1]
            c2grams.append(c2gram)
        if i < len(c1grams) - 2:
            c3gram = c1grams[i] + " " + c1grams[i + 1] + " " + c1grams[i + 2]
            c3grams.append(c3gram)
        if i < len(c1grams) - 3:
            c4gram = c1grams[i] + " " + c1grams[i + 1] + " " + c1grams[i + 2] + " " + c1grams[i + 3]
            c4grams.append(c4gram)

    (keep1score, del1score, add1score) = SARIngram(s1grams, c1grams, r1gramslist, numref)
    (keep2score, del2score, add2score) = SARIngram(s2grams, c2grams, r2gramslist, numref)
    (keep3score, del3score, add3score) = SARIngram(s3grams, c3grams, r3gramslist, numref)
    (keep4score, del4score, add4score) = SARIngram(s4grams, c4grams, r4gramslist, numref)
    avgkeepscore = sum([keep1score, keep2score, keep3score, keep4score]) / 4
    avgdelscore = sum([del1score, del2score, del3score, del4score]) / 4
    avgaddscore = sum([add1score, add2score, add3score, add4score]) / 4
    finalscore = (avgkeepscore + avgdelscore + avgaddscore) / 3
    return finalscore, avgkeepscore, avgdelscore, avgaddscore


def normalize(sentence, lowercase: bool = True, tokenizer: str = "13a", return_str: bool = True):

    # Normalization is requried for the ASSET dataset (one of the primary
    # datasets in sentence simplification) to allow using space
    # to split the sentence. Even though Wiki-Auto and TURK datasets,
    # do not require normalization, we do it for consistency.
    # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
    # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7

    if lowercase:
        sentence = sentence.lower()

    if tokenizer in ["13a", "intl"]:
        if version.parse(sacrebleu.__version__).major >= 2:
            normalized_sent = sacrebleu.metrics.bleu._get_tokenizer(tokenizer)()(sentence)
        else:
            normalized_sent = sacrebleu.TOKENIZERS[tokenizer]()(sentence)
    elif tokenizer == "moses":
        normalized_sent = sacremoses.MosesTokenizer().tokenize(sentence, return_str=True, escape=False)
    elif tokenizer == "penn":
        normalized_sent = sacremoses.MosesTokenizer().penn_tokenize(sentence, return_str=True)
    else:
        normalized_sent = sentence

    if not return_str:
        normalized_sent = normalized_sent.split()

    return normalized_sent


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Sari(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "sources": datasets.Value("string", id="sequence"),
                    "predictions": datasets.Value("string", id="sequence"),
                    "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
                }
            ),
            codebase_urls=[
                "https://github.com/cocoxu/simplification/blob/master/SARI.py",
                "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py",
            ],
            reference_urls=["https://www.aclweb.org/anthology/Q16-1029.pdf"],
        )

    def _compute(self, sources, predictions, references):

        if not (len(sources) == len(predictions) == len(references)):
            raise ValueError("Sources length must match predictions and references lengths.")
        sari_score = 0
        avgkeepscore = 0
        avgdelscore = 0
        avgaddscore = 0
        for src, pred, refs in zip(sources, predictions, references):
            _sari_score, _avgkeepscore, _avgdelscore, _avgaddscore = SARIsent(normalize(src), normalize(pred), [normalize(sent) for sent in refs])
            sari_score += _sari_score
            avgkeepscore += _avgkeepscore
            avgdelscore += _avgdelscore
            avgaddscore += _avgaddscore
            
        sari_score = sari_score / len(predictions)
        avgkeepscore = avgkeepscore / len(predictions)
        avgdelscore = avgdelscore / len(predictions)
        avgaddscore = avgaddscore / len(predictions)
        return {"sari": 100 * sari_score, "keep": 100 * avgkeepscore, 
                "del": 100 * avgdelscore, "add": 100 * avgaddscore}