import pysbd from txtai.embeddings import Embeddings import networkx as nx from tqdm import tqdm from txtai.graph import GraphFactory from datasets import load_dataset import streamlit as st import streamlit.components.v1 as components import string st.set_page_config(page_title="DebateKG") st.title("DebateKG - Automatic Policy Debate Case Creation") st.caption("github: https://github.com/Hellisotherpeople/DebateKG") form = st.sidebar.form("Main Settings") form.header("Main Settings") highlight_threshold = form.number_input("Enter the minimum similarity value needed to highlight" , value = 0.05) show_extract = form.checkbox("Show extracts", value = True) show_abstract = form.checkbox("Show abstract", value = False) show_full_doc = form.checkbox("Show full doc", value = False) show_citation = form.checkbox("Show citation", value = True) rerank_word = form.text_input("(Optional) Constrain all evidence in the case to have this word within its text", value = "") form.caption("Doing this may create graphs which are so constrained that DebateKG can't find a valid path in the graph to build a case") html_window_width = form.number_input("Enter the pixel width of the output debate case window", value = 1000) html_window_height = form.number_input("Enter the pixel height of the output debate case window", value = 1000) option = form.selectbox( 'Which Knowledge Graph do you want to use?', ('DebateSum_SemanticGraph_longformer_extract.tar.gz', 'DebateSum_SemanticGraph_longformer_abstract.tar.gz', 'DebateSum_SemanticGraph_mpnet_abstract.tar.gz', 'DebateSum_SemanticGraph_legalbert_abstract.tar.gz', 'DebateSum_SemanticGraph_legalbert_extract.tar.gz', 'DebateSum_SemanticGraph_mpnet_extract.tar.gz', 'DebateSum_SemanticGraph_mpnet_sentence.tar.gz'), index = 2) form.form_submit_button("Change Settings") @st.cache(allow_output_mutation=True) def load_my_dataset(): dataset = load_dataset("Hellisotherpeople/DebateSum", split = "train") return dataset @st.cache(allow_output_mutation=True) def load_embeddings(): embeddings = Embeddings({ "path": "sentence-transformers/all-mpnet-base-v2", "content": True, "functions": [ {"name": "graph", "function": "graph.attribute"}, ], "expressions": [ {"name": "topic", "expression": "graph(indexid, 'topic')"}, {"name": "topicrank", "expression": "graph(indexid, 'topicrank')"} ], "graph": { "limit": 100, "minscore": 0.10, "topics": { "terms": 4, "resolution" : 100 } } }) embeddings.load(option) return embeddings dataset = load_my_dataset() embeddings = load_embeddings() graph = embeddings.graph def david_distance(source, target, attrs): distance = max(1.0 - attrs["weight"], 0.0) return distance if distance >= 0.15 else 1.00 def david_showpath(source, target, the_graph): return nx.shortest_path(the_graph, source, target, david_distance) def david_show_all_paths(source, target, the_graph): return nx.all_shortest_paths(the_graph, source, target, david_distance) def highlight(index, result): output = f"{index}. " spans = [(token, score, "#fff59d" if score > highlight_threshold else None) for token, score in result["tokens"]] for token, _, color in spans: output += f"{token} " if color else f"{token} " return output def showpath_any(list_of_arguments, strip_punctuation = True, the_graph=graph.backend): list_of_paths = [] for x, y in zip(list_of_arguments, list_of_arguments[1:]): a_path = david_showpath(x, y, the_graph) list_of_paths.extend(a_path) #print(list_of_paths) path = [graph.attribute(p, "text") for p in list_of_paths] list_of_evidence_ids = [] for text in path: if strip_punctuation: text = text.translate(str.maketrans("","", string.punctuation)) list_of_evidence_ids.append(int(embeddings.search(f"select id from txtai where similar('{text}') limit 1")[0]['id'])) sections = [] #sections.append(list_of_evidence_ids) for x, p in enumerate(path): if x == 0: # Print start node sections.append(f"{x + 1}. {p}") if show_abstract: sections.append(dataset["Abstract"][list_of_evidence_ids[x]]) if show_citation: sections.append(dataset["Citation"][list_of_evidence_ids[x]]) if show_extract: sections.append(dataset["Extract"][list_of_evidence_ids[x]]) if show_full_doc: sections.append(dataset["Full-Document"][list_of_evidence_ids[x]]) if x < len(path) - 1: # Explain and highlight next path element results = embeddings.explain(p, [path[x + 1]], limit=1)[0] sections.append(highlight(x + 2, results)) if show_abstract: sections.append(dataset["Abstract"][list_of_evidence_ids[x+1]]) if show_citation: sections.append(dataset["Citation"][list_of_evidence_ids[x+1]]) if show_extract: sections.append(dataset["Extract"][list_of_evidence_ids[x+1]]) if show_full_doc: sections.append(dataset["Full-Document"][list_of_evidence_ids[x+1]]) return components.html("

".join(sections), scrolling = True, width = html_window_width, height = html_window_height) def question(text, rerank_word = "", rerank_topic = "", limit = 100): return embeddings.search(f"select id, text, topic, evidence_id, score from txtai where similar('{text}') and text like '%{rerank_word}%' and topic like '%{rerank_topic}%' limit {limit}") query_form = st.form("Query the Index:") query_form.write("Step 1: Find Arguments") query_form.write("Use semantic SQL from txtai to find some arguments, we use indexids to keep track of them.") query_form.caption("You can use the semantic SQL to explore the dataset too! The possibilities are limitless!") query_sql = query_form.text_area("Enter a semantic SQL statement", value = f"select topic, * from txtai where similar('Trump and US relations with China') and topic like '%trump%' and text like '%china%' limit 1") query_form_submitted = query_form.form_submit_button("Query") if query_form_submitted: with st.expander("Output (Open Me)", expanded = False): #my_path = showpath_any([170750, 50, 23]) #st.write(embeddings.search(f"select * from txtai where similar('you') and text like '%the%' limit 10")) st.write(embeddings.search(query_sql)) paths_form = st.form("Build the Arguments") paths_form.write("Step 2: Build a Policy Debate Case") paths_form.write("Enter any number of indexids (arguments), DebateKG will build a debate case out of it which links them all together") user_paths_string = paths_form.text_area("Enter a list of indexids seperated by whitespace", value = "250 10000 2405") user_paths_list_of_strings = user_paths_string.split() user_paths_list = list(map(int, user_paths_list_of_strings)) paths_form_submitted = paths_form.form_submit_button("Build a Policy Debate Case") if paths_form_submitted: if rerank_word: selected_nodes = [n for n,v in graph.backend.nodes(data=True) if rerank_word in v['text']] ##also works for topic H = graph.backend.subgraph(selected_nodes) showpath_any(user_paths_list, the_graph = H) else: showpath_any(user_paths_list)