Spaces:
Running
Running
File size: 5,495 Bytes
b3bfdeb b32c86f b3bfdeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import torch
import random
import torch.nn as nn
import lightning as L
from pathlib import Path
from torch.utils.data import DataLoader
from lightning.fabric.loggers import CSVLogger
from lightning.fabric.strategies import FSDPStrategy
from tsai_gpt.model import GPT, Block, Config
from tsai_gpt.tokenizer import Tokenizer
from tsai_gpt.utils import get_default_supported_precision, load_checkpoint, gptq_quantization
example_text = [
"In a galaxy far, far away, an intergalactic council convenes to discuss the rising cost of lightsaber batteries. Among them is an unlikely representative: a droid with a penchant for economics...",
"As Sherlock Holmes and Dr. Watson enter the world of social media influencers, they find their first case: the mysterious disappearance of a famous TikTok star's like button.",
"In the midst of a zombie apocalypse, a group of survivors discovers a library with every book intact except for cookbooks. Their leader, a former TV chef, decides to write the ultimate survival recipe book titled...",
"A time traveler accidentally attends Shakespeare's first play, but instead of a quill, she hands him a smartphone with autocorrect. The resulting play is...",
"Amidst the chaos of a Hogwarts School reunion, a magical mishap swaps the voices of Professors Dumbledore and Snape, leading to an unexpected duet in the Great Hall that goes viral in the wizarding world."
]
examples = [
[
example_text[i],
round(random.uniform(0.7,1), 1),
int(random.uniform(120,200)),
int(random.uniform(200,300))] for i,x in enumerate(example_text)
]
model_name = "pythia-160m"
name = "redpajama"
checkpoint_dir = Path("iter-014870-ckpt.pth")
quantize = None
strategy = "auto"
devices = 1
precision = get_default_supported_precision(training=False)
plugins = None
fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy, plugins=plugins)
fabric.launch()
with fabric.init_module(empty_init=True), gptq_quantization(quantize=="gptq.int4"):
config = Config.from_name(model_name)
model = GPT(config)
model.eval()
model = fabric.setup_module(model)
load_checkpoint(fabric, model, checkpoint_dir)
tokenizer = Tokenizer(Path('tokenizer'))
def generate_dialogue(input_text, temperature, max_tokens, top_k):
encoded = tokenizer.encode(input_text, device=fabric.device)
max_returned_tokens = encoded.size(0) + max_tokens
with fabric.init_tensor():
# set the max_seq_length to limit the memory usage to what we need
model.max_seq_length = max_returned_tokens
with fabric.init_tensor():
model.set_kv_cache(batch_size=1)
y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k)
return(tokenizer.decode(y))
@torch.inference_mode()
def generate(
model: GPT,
idx: torch.Tensor,
max_returned_tokens: int,
*,
temperature: float = 1.0,
top_k:int = None,
eos_id:int = None,
) -> torch.Tensor:
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
The implementation of this function is modified from A. Karpathy's nanoGPT.
Args:
model: The model to use.
idx: Tensor of shape (T) with indices of the prompt sequence.
max_returned_tokens: The maximum number of tokens to return (given plus generated).
temperature: Scales the predicted logits by 1 / temperature.
top_k: If specified, only sample among the tokens with the k highest probabilities.
eos_id: If specified, stop generating any more token once the <eos> token is triggered.
"""
T = idx.size(0)
assert max_returned_tokens > T
if model.max_seq_length < max_returned_tokens - 1:
# rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
# data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
# not support it to avoid negatively impacting the overall speed
raise NotImplementedError(f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}")
device, dtype = idx.device, idx.dtype
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty(max_returned_tokens, dtype=dtype, device=device)
empty[:T] = idx
idx = empty
input_pos = torch.arange(0, T, device=device)
# generate up to a fixed number of tokens
for _ in range(max_returned_tokens - T):
x = idx.index_select(0, input_pos).view(1, -1)
# forward
logits = model(x, input_pos)
logits = logits[0, -1] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits = torch.where(logits < v[[-1]], -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)
# advance
input_pos = input_pos[-1:] + 1
# concatenate the new generation
idx = idx.index_copy(0, input_pos, idx_next)
# if <eos> token is triggered, return the output (stop generation)
if idx_next == eos_id:
return idx[:input_pos] # include the EOS token
return idx
|