GPT_train_on_LLaMa / utils.py
HemaAM's picture
Initial upload of application and other files
b3bfdeb
raw
history blame
5.5 kB
import torch
import random
import torch.nn as nn
import lightning as L
from pathlib import Path
from torch.utils.data import DataLoader
from lightning.fabric.loggers import CSVLogger
from lightning.fabric.strategies import FSDPStrategy
from tsai_gpt.model import GPT, Block, Config
from tsai_gpt.tokenizer import Tokenizer
from tsai_gpt.utils import get_default_supported_precision, load_checkpoint, gptq_quantization
example_text = [
"In a galaxy far, far away, an intergalactic council convenes to discuss the rising cost of lightsaber batteries. Among them is an unlikely representative: a droid with a penchant for economics...",
"As Sherlock Holmes and Dr. Watson enter the world of social media influencers, they find their first case: the mysterious disappearance of a famous TikTok star's like button.",
"In the midst of a zombie apocalypse, a group of survivors discovers a library with every book intact except for cookbooks. Their leader, a former TV chef, decides to write the ultimate survival recipe book titled...",
"A time traveler accidentally attends Shakespeare's first play, but instead of a quill, she hands him a smartphone with autocorrect. The resulting play is...",
"Amidst the chaos of a Hogwarts School reunion, a magical mishap swaps the voices of Professors Dumbledore and Snape, leading to an unexpected duet in the Great Hall that goes viral in the wizarding world."
]
examples = [
[
example_text[i],
round(random.uniform(0.7,1), 1),
int(random.uniform(120,200)),
int(random.uniform(200,300))] for i,x in enumerate(example_text)
]
model_name = "pythia-160m"
name = "redpajama"
checkpoint_dir = Path("iter-010915-ckpt.pth")
quantize = None
strategy = "auto"
devices = 1
precision = get_default_supported_precision(training=False)
plugins = None
fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy, plugins=plugins)
fabric.launch()
with fabric.init_module(empty_init=True), gptq_quantization(quantize=="gptq.int4"):
config = Config.from_name(model_name)
model = GPT(config)
model.eval()
model = fabric.setup_module(model)
load_checkpoint(fabric, model, checkpoint_dir)
tokenizer = Tokenizer(Path('tokenizer'))
def generate_dialogue(input_text, temperature, max_tokens, top_k):
encoded = tokenizer.encode(input_text, device=fabric.device)
max_returned_tokens = encoded.size(0) + max_tokens
with fabric.init_tensor():
# set the max_seq_length to limit the memory usage to what we need
model.max_seq_length = max_returned_tokens
with fabric.init_tensor():
model.set_kv_cache(batch_size=1)
y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k)
return(tokenizer.decode(y))
@torch.inference_mode()
def generate(
model: GPT,
idx: torch.Tensor,
max_returned_tokens: int,
*,
temperature: float = 1.0,
top_k:int = None,
eos_id:int = None,
) -> torch.Tensor:
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
The implementation of this function is modified from A. Karpathy's nanoGPT.
Args:
model: The model to use.
idx: Tensor of shape (T) with indices of the prompt sequence.
max_returned_tokens: The maximum number of tokens to return (given plus generated).
temperature: Scales the predicted logits by 1 / temperature.
top_k: If specified, only sample among the tokens with the k highest probabilities.
eos_id: If specified, stop generating any more token once the <eos> token is triggered.
"""
T = idx.size(0)
assert max_returned_tokens > T
if model.max_seq_length < max_returned_tokens - 1:
# rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
# data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
# not support it to avoid negatively impacting the overall speed
raise NotImplementedError(f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}")
device, dtype = idx.device, idx.dtype
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty(max_returned_tokens, dtype=dtype, device=device)
empty[:T] = idx
idx = empty
input_pos = torch.arange(0, T, device=device)
# generate up to a fixed number of tokens
for _ in range(max_returned_tokens - T):
x = idx.index_select(0, input_pos).view(1, -1)
# forward
logits = model(x, input_pos)
logits = logits[0, -1] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits = torch.where(logits < v[[-1]], -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)
# advance
input_pos = input_pos[-1:] + 1
# concatenate the new generation
idx = idx.index_copy(0, input_pos, idx_next)
# if <eos> token is triggered, return the output (stop generation)
if idx_next == eos_id:
return idx[:input_pos] # include the EOS token
return idx