File size: 8,090 Bytes
5aebe57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import PIL
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as T
from diffusers import LMSDiscreteScheduler, DiffusionPipeline

# configurations
torch_device        = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
height, width       = 512, 512
guidance_scale      = 8
loss_scale          = 200
num_inference_steps = 50


model_path = "CompVis/stable-diffusion-v1-4"
sd_pipeline = DiffusionPipeline.from_pretrained(
    model_path,
    low_cpu_mem_usage = True,
    torch_dtype=torch.float32
).to(torch_device)


sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")


styles_mapping = {
    "Illustration Style": '<illustration-style>', "Line Art":'<line-art>',
    "Hitokomoru Style":'<hitokomoru-style-nao>', "Marc Allante": '<Marc_Allante>',
    "Midjourney":'<midjourney-style>', "Hanfu Anime": '<hanfu-anime-style>',
    "Birb Style": '<birb-style>'
}

# Define seeds for all the styles
seed_list = [11, 56, 110, 65, 5, 29, 47]

# Loss Function based on Edge Detection
def edge_detection(image):
    channels = image.shape[1]

    # Define the kernels for Edge Detection
    ed_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)
    ed_y = torch.tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)

    # Replicate the Edge detection kernels for each channel
    ed_x = ed_x.repeat(channels, 1, 1, 1).to(image.device)
    ed_y = ed_y.repeat(channels, 1, 1, 1).to(image.device)

    # ed_x = ed_x.to(torch.float16)
    # ed_y = ed_y.to(torch.float16)

    # Convolve the image with the Edge detection kernels
    conv_ed_x = F.conv2d(image, ed_x, padding=1, groups=channels)
    conv_ed_y = F.conv2d(image, ed_y, padding=1, groups=channels)

    # Combine the x and y gradients after convolution
    ed_value = torch.sqrt(conv_ed_x**2 + conv_ed_y**2)

    return ed_value

def edge_loss(image):
    ed_value = edge_detection(image)
    ed_capped = (ed_value > 0.5).to(torch.float32)
    return F.mse_loss(ed_value, ed_capped)

def compute_loss(original_image, loss_type):

    if loss_type == 'blue':
        # blue loss
        # [:,2] -> all images in batch, only the blue channel
        error = torch.abs(original_image[:,2] - 0.9).mean()
    elif loss_type == 'edge':
        # edge loss
        error = edge_loss(original_image)        
    elif loss_type == 'contrast':
        # RGB to Gray loss
        transformed_image = T.functional.adjust_contrast(original_image, contrast_factor = 2)
        error = torch.abs(transformed_image - original_image).mean()
    elif loss_type == 'brightness':
        # brightnesss loss
        transformed_image = T.functional.adjust_brightness(original_image, brightness_factor = 2)
        error = torch.abs(transformed_image - original_image).mean()
    elif loss_type == 'sharpness':
        # sharpness loss
        transformed_image = T.functional.adjust_sharpness(original_image, sharpness_factor = 2)
        error = torch.abs(transformed_image - original_image).mean()
    elif loss_type == 'saturation':
        # saturation loss
        transformed_image = T.functional.adjust_saturation(original_image, saturation_factor = 10)
        error = torch.abs(transformed_image - original_image).mean()
    else:
        print("error. Loss not defined")

    return error


def get_examples():
   examples = [
      ['A bird sitting on a tree', 'Midjourney', 'edge', 5],
      ['Cats fighting on the road', 'Marc Allante', 'brightness', 65],
      ['A mouse with the head of a puppy', 'Hitokomoru Style', 'contrast', 110],
      ['A woman with a smiling face in front of an Italian Pizza', 'Hanfu Anime', 'brightness', 29],
      ['A campfire (oil on canvas)', 'Birb Style', 'blue', 47],
   ]
   return(examples)


def latents_to_pil(latents):
    # bath of latents -> list of images
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = sd_pipeline.vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1) # 0 to 1
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    image = (image * 255).round().astype("uint8")
    return Image.fromarray(image[0])


def show_image(prompt, concept, guidance_type, seed):

  prompt = f"{prompt} in the style of {styles_mapping[concept]}"
  styled_image_without_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=False))
  styled_image_with_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=True))
  return([styled_image_without_loss, styled_image_with_loss])


def generate_image(seed, prompt, loss_type, loss_flag=False):

    generator           = torch.manual_seed(seed)
    batch_size          = 1

    # scheduler
    scheduler    = LMSDiscreteScheduler(beta_start = 0.00085, beta_end = 0.012, beta_schedule = "scaled_linear", num_train_timesteps = 1000)
    scheduler.set_timesteps(num_inference_steps)
    scheduler.timesteps = scheduler.timesteps.to(torch.float32)

    # text embeddings of the prompt
    text_input = sd_pipeline.tokenizer(prompt, padding='max_length', max_length = sd_pipeline.tokenizer.model_max_length, truncation= True, return_tensors="pt")
    input_ids = text_input.input_ids.to(torch_device)

    with torch.no_grad():
        text_embeddings = sd_pipeline.text_encoder(text_input.input_ids.to(torch_device))[0]

    max_length = text_input.input_ids.shape[-1]
    uncond_input = sd_pipeline.tokenizer(
          [""] * batch_size, padding="max_length", max_length= max_length, return_tensors="pt"
    )

    with torch.no_grad():
        uncond_embeddings = sd_pipeline.text_encoder(uncond_input.input_ids.to(torch_device))[0]

    text_embeddings = torch.cat([uncond_embeddings,text_embeddings]) # shape: 2,77,768

    # random latent
    latents = torch.randn(
        (batch_size, sd_pipeline.unet.config.in_channels, height// 8, width //8),
        generator = generator,
    ) .to(torch.float32)


    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    for i, t in tqdm(enumerate(scheduler.timesteps), total = len(scheduler.timesteps)):

        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        with torch.no_grad():
            noise_pred = sd_pipeline.unet(latent_model_input.to(torch.float32), t, encoder_hidden_states=text_embeddings)["sample"]

        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        if loss_flag and i%5 == 0:

            latents = latents.detach().requires_grad_()
            # the following line alone does not work, it requires change to reduce step only once
            # hence commenting it out
            #latents_x0 = scheduler.step(noise_pred,t, latents).pred_original_sample 
            latents_x0 = latents - sigma * noise_pred

            # use vae to decode the image
            denoised_images = sd_pipeline.vae.decode((1/ 0.18215) * latents_x0).sample / 2 + 0.5 # range(0,1)

            loss = compute_loss(denoised_images, loss_type) * loss_scale
            #loss = loss.to(torch.float16)
            print(f"{i} loss {loss}")

            cond_grad = torch.autograd.grad(loss, latents)[0]
            latents = latents.detach() - cond_grad * sigma**2

        latents = scheduler.step(noise_pred,t, latents).prev_sample

    return latents