Spaces:
Sleeping
Sleeping
from langchain_openai import OpenAI | |
from pypdf import PdfReader | |
import pandas as pd | |
import re | |
from langchain.prompts import PromptTemplate | |
from langchain_community.llms import CTransformers | |
from ctransformers import AutoModelForCausalLM | |
#Extract Information from PDF file | |
def get_pdf_text(pdf_doc): | |
text = "" | |
pdf_reader = PdfReader(pdf_doc) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
#Function to extract data from text... | |
def extracted_data(pages_data): | |
template = """Please Extract all the following values : invoice no., Description, Quantity, date, | |
Unit price , Amount, Total, email, phone number and address from this data: {pages} | |
Expected output: remove any dollar symbols {{'Invoice no.': '1001329','Description': 'Office Chair','Quantity': '2','Date': '5/4/2023','Unit price': '1100.00$','Amount': '2200.00$','Total': '2200.00$','Email': '[email protected]','Phone number': '9999999999','Address': 'Mumbai, India'}} | |
""" | |
# prompt_template = PromptTemplate(input_variables=["pages"], template=template) | |
# llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q8_0.bin",model_type='llama') | |
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGML", model_file="llama-2-7b-chat.ggmlv3.q8_0.bin") | |
#Creating the final PROMPT | |
prompt = PromptTemplate( | |
input_variables=["pages"], | |
template=template,) | |
#Generating the response using LLM | |
#Last week langchain has recommended to use 'invoke' function for the below please :) | |
response=llm(prompt.format(email_topic=form_input,sender=email_sender,recipient=email_recipient,style=email_style)) | |
output_text=llm(prompt_template.format(pages=pages_data)) | |
full_response = '' | |
for item in output_text: | |
full_response += item | |
return full_response | |
# iterate over files in | |
# that user uploaded PDF files, one by one | |
def create_docs(user_pdf_list): | |
df = pd.DataFrame({'Invoice no.': pd.Series(dtype='str'), | |
'Description': pd.Series(dtype='str'), | |
'Quantity': pd.Series(dtype='str'), | |
'Date': pd.Series(dtype='str'), | |
'Unit price': pd.Series(dtype='str'), | |
'Amount': pd.Series(dtype='int'), | |
'Total': pd.Series(dtype='str'), | |
'Email': pd.Series(dtype='str'), | |
'Phone number': pd.Series(dtype='str'), | |
'Address': pd.Series(dtype='str') | |
}) | |
for filename in user_pdf_list: | |
# print(filename) | |
raw_data=get_pdf_text(filename) | |
print("pdf_Data",raw_data) | |
# print("extracted raw data") | |
llm_extracted_data=extracted_data(raw_data) | |
print("llm_extracted_data",llm_extracted_data) | |
#print(llm_extracted_data) | |
#print("llm extracted data") | |
#Adding items to our list - Adding data & its metadata | |
pattern = r'{(.+)}' | |
match = re.search(pattern, llm_extracted_data, re.DOTALL) | |
if match: | |
extracted_text = match.group(1) | |
# Converting the extracted text to a dictionary | |
data_dict = eval('{' + extracted_text + '}') | |
print(data_dict) | |
else: | |
print("No match found.") | |
# Initialize data_dict | |
data_dict = {} | |
df=df._append([data_dict], ignore_index=True) | |
print("********************DONE***************") | |
# df=df.append(save_to_dataframe(llm_extracted_data), ignore_index=True) | |
llm_extracted_data | |
return llm_extracted_data |