Spaces:
Sleeping
Sleeping
import gradio as gr | |
import joblib | |
import numpy as np | |
import pandas as pd | |
from huggingface_hub import hf_hub_download | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder | |
# Load the trained model and scaler objects from file | |
REPO_ID = "Hemg/marketpredict" # Hugging Face repo ID | |
MoDEL_FILENAME = "stx.joblib" # Model file name | |
SCALER_FILENAME = "scaler.joblib" # Scaler file name | |
model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME)) | |
scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME)) | |
def encode_categorical_columns(df): | |
label_encoder = LabelEncoder() | |
ordinal_columns = df.select_dtypes(include=['object']).columns | |
for col in ordinal_columns: | |
df[col] = label_encoder.fit_transform(df[col]) | |
nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns) | |
df = pd.get_dummies(df, columns=nominal_columns, drop_first=True) | |
return df | |
# Define the prediction function | |
def predict_performance(Year, Instagram_Advertising, Facebook_Advertising, Event_Expenses, Internet_Expenses): | |
# Prepare input data (represents independent variables for house prediction) | |
input_data = [[Year, Instagram_Advertising, Facebook_Advertising, Event_Expenses, Internet_Expenses]] | |
# Get the feature names from the Gradio interface inputs | |
feature_names = ["Year", "Instagram_Advertising", "Facebook_Advertising", "Event_Expenses", "Internet_Expenses"] | |
# Create a Pandas DataFrame with the input data and feature names | |
input_df = pd.DataFrame(input_data, columns=feature_names) | |
input_df = encode_categorical_columns(input_df) | |
# Scale the input data using the loaded scaler | |
scaled_input = scaler.transform(input_df) | |
# Make predictions using the loaded model | |
prediction = model.predict(scaled_input)[0] | |
# Return the result as HTML with custom styling (green color and larger font) | |
return f'<p style="font-size: 24px; color: green;">Forecast no of. Students admission: {prediction:,.0f}</p>' | |
# Create the Gradio app | |
iface = gr.Interface( | |
fn=predict_performance, | |
inputs=[ | |
gr.Slider(minimum=2024, maximum=2025, step=1, label="Year",info="The forecasted Year"), | |
gr.Slider(minimum=10000, maximum=45000, step=500, label="Instagram_Advertising", info="How much do you spend on Instagram ads Yearly($)?"), | |
gr.Slider(minimum=10000, maximum=75000, step=500, label="Facebook_Advertising", info="How much do you spend on Facebook ads Yearly($)?"), | |
gr.Slider(minimum=20000, maximum=100000, step=500, label="Event_Expenses", info="What’s your typical budget for events($)?"), | |
gr.Slider(minimum=5000, maximum=45000, step=500, label="Internet_Expenses", info="How much do you spend on internet Yearly($)?") | |
], | |
outputs=gr.HTML(), # Specify the output as HTML | |
title="Student Admission Forecast", | |
description="Forecast of chances of student admission based on marketing expenditures" | |
) | |
# Run the app | |
if __name__ == "__main__": | |
iface.launch(share=True) | |