import gradio as gr import joblib import numpy as np import pandas as pd from huggingface_hub import hf_hub_download from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder # Load the trained model and scaler objects from file REPO_ID = "Hemg/marketpredict" # hugging face repo ID MoDEL_FILENAME = "stx.joblib" # model file name SCALER_FILENAME ="scaler.joblib" # scaler file name model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME)) scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME)) def encode_categorical_columns(df): label_encoder = LabelEncoder() ordinal_columns = df.select_dtypes(include=['object']).columns for col in ordinal_columns: df[col] = label_encoder.fit_transform(df[col]) nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns) df = pd.get_dummies(df, columns=nominal_columns, drop_first=True) return df # Define the prediction function def predict_performance(Year,Instagram_Advertising,Facebook_Advertising,Event_Expenses,Internet_Expenses): # Prepare input data represents independent variables for house prediction input_data = [[Year,Instagram_Advertising,Facebook_Advertising,Event_Expenses,Internet_Expenses]] # Get the feature names from the Gradio interface inputs feature_names = ["Year","Instagram_Advertising","Facebook_Advertising","Event_Expenses","Internet_Expenses"] # Create a Pandas DataFrame with the input data and feature names input_df = pd.DataFrame(input_data, columns=feature_names) input_df = pd.DataFrame(input_data, columns=feature_names) df = encode_categorical_columns(input_df) # Scale the input data using the loaded scaler scaled_input = scaler.transform(df) # Make predictions using the loaded model prediction = model.predict(scaled_input)[0] return f"No of Forecast Admitted students: {prediction:,.2f}" # Create the Gradio app iface = gr.Interface( fn=predict_performance, inputs=[ gr.Slider(minimum=2024, maximum=2025, step=1, label="Year"), gr.Slider(minimum=10000, maximum=50000, step=500, label="Instagram_Advertising"), gr.Slider(minimum=10000, maximum=50000, step=500, label="Facebook_Advertising"), gr.Slider(minimum=20000, maximum=50000,step=500,label="Event_Expenses"), gr.Slider(minimum=5000, maximum=25000,step=500,label="Internet_EXpenses") ], outputs="text", title="Student_Admitted_Forecast", description="Student_Admitted" ) # Run the app if __name__ == "__main__": iface.launch(share=True)