Spaces:
Sleeping
Sleeping
HenryStephen
commited on
Commit
•
8b9797b
1
Parent(s):
2d9baa8
First commit
Browse files- app.py +96 -0
- data/filtered_table.xlsx +0 -0
- data/table.docx +0 -0
- data/table.xlsx +0 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
# 1. Loading the dataset
|
5 |
+
df = pd.read_excel("data/table.xlsx")
|
6 |
+
|
7 |
+
# 2. Preprocessing the dataset
|
8 |
+
df["Bionic prototype"] = df["Bionic prototype"].str.strip()
|
9 |
+
df["Materials"] = df["Materials"].str.split(";").apply(lambda x: [material.strip() for material in x])
|
10 |
+
df["Method"] = df["Method"].str.split(";").apply(lambda x: [method.strip() for method in x])
|
11 |
+
df["Multifunction"] = df["Multifunction"].str.split(";").apply(lambda x: [multifunction.strip() for multifunction in x])
|
12 |
+
|
13 |
+
# 3. Saving the processed dataset
|
14 |
+
# df.to_excel("data/filtered_table.xlsx", index=False)
|
15 |
+
|
16 |
+
# 4. Extracting a unique list for each column
|
17 |
+
bionic_prototype_list = df["Bionic prototype"].unique()
|
18 |
+
method_list = df["Method"].explode().unique()
|
19 |
+
multifunction_list = df["Multifunction"].explode().unique()
|
20 |
+
bionic_prototype_list.sort()
|
21 |
+
method_list.sort()
|
22 |
+
multifunction_list.sort()
|
23 |
+
|
24 |
+
with st.sidebar:
|
25 |
+
st.slider(
|
26 |
+
label="Search results limit",
|
27 |
+
min_value=1,
|
28 |
+
max_value=50,
|
29 |
+
value=20,
|
30 |
+
step=1,
|
31 |
+
key="limit",
|
32 |
+
help="Limit the number of search results",
|
33 |
+
)
|
34 |
+
|
35 |
+
st.multiselect(
|
36 |
+
label="Display columns",
|
37 |
+
options=["Bionic prototype", "Multifunction", "Method", "Materials", "Res"],
|
38 |
+
default=["Bionic prototype", "Multifunction", "Method", "Materials", "Res"],
|
39 |
+
help="Select columns to display in the search results",
|
40 |
+
key="display_columns",
|
41 |
+
)
|
42 |
+
|
43 |
+
st.title("Bionic Path Selection")
|
44 |
+
|
45 |
+
st.multiselect(
|
46 |
+
label="Multifunction",
|
47 |
+
options=multifunction_list,
|
48 |
+
default=[],
|
49 |
+
help="Select the multifunction to display in the search results",
|
50 |
+
placeholder="Select the multifunction to display in the search results",
|
51 |
+
key="multifunction_option"
|
52 |
+
)
|
53 |
+
|
54 |
+
st.session_state.disabled = False if len(st.session_state.multifunction_option) > 0 else True
|
55 |
+
|
56 |
+
left_col, right_col = st.columns(2)
|
57 |
+
with left_col:
|
58 |
+
st.selectbox(
|
59 |
+
label="Bionic prototype",
|
60 |
+
options=bionic_prototype_list,
|
61 |
+
help="Select the bionic prototype to display in the search results",
|
62 |
+
placeholder="Select the bionic prototype to display in the search results",
|
63 |
+
index=None,
|
64 |
+
key="bionic_prototype_option",
|
65 |
+
disabled=st.session_state.disabled
|
66 |
+
)
|
67 |
+
with right_col:
|
68 |
+
st.multiselect(
|
69 |
+
label="Method",
|
70 |
+
options=method_list,
|
71 |
+
default=[],
|
72 |
+
help="Select the method to display in the search results",
|
73 |
+
placeholder="Select the method to display in the search results",
|
74 |
+
key="method_option",
|
75 |
+
disabled=st.session_state.disabled
|
76 |
+
)
|
77 |
+
|
78 |
+
search = st.button("Search")
|
79 |
+
if search:
|
80 |
+
multifunction_option = st.session_state.multifunction_option
|
81 |
+
bionic_prototype_option = st.session_state.bionic_prototype_option
|
82 |
+
method_option = st.session_state.method_option
|
83 |
+
|
84 |
+
# Filter the multifunction column
|
85 |
+
filtered_df = df[
|
86 |
+
df["Multifunction"].apply(lambda x: all(multifunction in x for multifunction in multifunction_option))]
|
87 |
+
# Filter the bionic prototype column
|
88 |
+
filtered_df = filtered_df[filtered_df["Bionic prototype"] == bionic_prototype_option] \
|
89 |
+
if (bionic_prototype_option is not None and not st.session_state.disabled and not filtered_df.empty) \
|
90 |
+
else filtered_df
|
91 |
+
# Filter the method column
|
92 |
+
filtered_df = filtered_df[filtered_df["Method"].apply(lambda x: any(method in x for method in method_option))] \
|
93 |
+
if (len(method_option) > 0 and not st.session_state.disabled and not filtered_df.empty) \
|
94 |
+
else filtered_df
|
95 |
+
|
96 |
+
st.dataframe(filtered_df[st.session_state.display_columns].head(st.session_state.limit))
|
data/filtered_table.xlsx
ADDED
Binary file (7.67 kB). View file
|
|
data/table.docx
ADDED
Binary file (37 kB). View file
|
|
data/table.xlsx
ADDED
Binary file (13 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
streamlit
|
3 |
+
openpyxl
|