Hexii commited on
Commit
9b9cfe1
1 Parent(s): 4ecc102

first commit

Browse files
Cat_Breed_Classifier_12_class_90_acc.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b7419cbb0437f1d8a8fe25ea511c2e881e7c08a279f3d03fe39c7fdc0767215
3
+ size 31323721
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+ from timeit import default_timer as timer
4
+ import gradio as gr
5
+ from typing import Tuple ,Dict
6
+ from model import create_effnetb2_model
7
+ import os
8
+
9
+
10
+
11
+ with open("classes.txt") as f:
12
+ classes= [line.rstrip() for line in f]
13
+
14
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
15
+ num_classes=len(classes))
16
+
17
+ effnetb2.load_state_dict(
18
+ torch.load(
19
+ f="Cat_Breed_Classifier_12_class_90_acc.pth",
20
+ map_location=torch.device("cpu"), # load to CPU
21
+ )
22
+ )
23
+
24
+ def predict(img):
25
+ start_time = timer()
26
+ img = effnetb2_transforms(img).unsqueeze(0)
27
+ effnetb2.eval()
28
+ with torch.inference_mode():
29
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
30
+ pred_labels_and_probs = {
31
+ classes[i]: float(pred_probs[0][i]) for i in range(len(classes))
32
+ }
33
+ pred_time = round(timer() - start_time, 5)
34
+ return pred_labels_and_probs, pred_time
35
+
36
+ title = "Cat Breed Classifier Demo 😼"
37
+ description = "<p style='text-align: center'>Gradio Demo for Classifying Cat Breeds of these <a href='https://huggingface.co/'>5 different types.<a></p>"
38
+ article = "</br><p style='text-align: center'><a href='https://github.com/Mr-Hexi' target='_blank'>GitHub</a></br>![visitors](https://visitor-badge.glitch.me/badge?page_id=Hexii.Cat-Breed-Classifier)</p> "
39
+
40
+
41
+
42
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
43
+
44
+ app = gr.Interface(
45
+ fn=predict,
46
+ inputs=gr.Image(type="pil"),
47
+ outputs=[
48
+ gr.Label(num_top_classes=5, label="Predictions"),
49
+ gr.Number(label="Prediction time (s)"),
50
+ ],
51
+ examples=example_list,
52
+ title=title,
53
+ description=description,
54
+ article=article,
55
+ )
56
+
57
+ app.launch()
classes.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Abyssinian
2
+ Bengal
3
+ Birman
4
+ Bombay
5
+ British Shorthair
6
+ Egyptian Mau
7
+ Maine Coon
8
+ Persian
9
+ Ragdoll
10
+ Russian Blue
11
+ Siamese
12
+ Sphynx
examples/Abyssinian.jpg ADDED
examples/British Shorthair.jpg ADDED
examples/bengal.jpg ADDED
examples/bombay.jpg ADDED
examples/persian.jpg ADDED
model.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torchvision
4
+
5
+ def create_effnetb2_model(num_classes:int=3,
6
+ seed:int=42):
7
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
8
+ transforms = weights.transforms()
9
+ model = torchvision.models.efficientnet_b2(weights=weights)
10
+
11
+ for param in model.parameters():
12
+ param.requires_grad = False
13
+
14
+ torch.manual_seed(seed)
15
+ model.classifier = nn.Sequential(
16
+ nn.Dropout(p=0.3, inplace=True),
17
+ nn.Linear(in_features=1408, out_features=num_classes),
18
+ )
19
+
20
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.12.0
2
+ torchvision==0.13.0
3
+ gradio==3.1.4