import torch import torchvision from timeit import default_timer as timer import gradio as gr from typing import Tuple ,Dict from model import create_effnetb2_model import os with open("classes.txt") as f: classes= [line.rstrip() for line in f.readlines()] effnetb2, effnetb2_transforms = create_effnetb2_model( num_classes=len(classes)) effnetb2.load_state_dict( torch.load( f="Cat_Breed_Classifier_12_class_90_acc.pth", map_location=torch.device("cpu"), # load to CPU ) ) def predict(img): start_time = timer() img = effnetb2_transforms(img).unsqueeze(0) effnetb2.eval() with torch.inference_mode(): pred_probs = torch.softmax(effnetb2(img), dim=1) pred_labels_and_probs = { classes[i]: float(pred_probs[0][i]) for i in range(len(classes)) } pred_time = round(timer() - start_time, 5) return pred_labels_and_probs, pred_time title = "Cat Breed Classifier Demo 😸" description = "Gradio Demo for Classifying Cat Breeds of these [12 different types](https://huggingface.co/spaces/Hexii/Cat-Breed-Classifier/blob/main/classes.txt)." article = "

GitHub

" example_list = [["examples/" + example] for example in os.listdir("examples")] app = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=3, label="Predictions"), gr.Number(label="Prediction time (s)"), ], examples=example_list, title=title, description=description, article=article, ) app.launch()