File size: 20,297 Bytes
66662af
 
 
dede4f0
b273b9d
56c7140
a5c2203
1420ae0
66662af
 
 
56c7140
dede4f0
0d3afce
66662af
56c7140
 
66662af
56c7140
 
7a97ac2
56c7140
7a97ac2
 
56c7140
7a97ac2
afe3886
2a91a35
56c7140
7a97ac2
 
56c7140
0d3afce
afe3886
8cf228f
 
 
 
 
 
 
 
 
0d3afce
8cf228f
 
 
 
 
 
afe3886
8cf228f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d3afce
afe3886
8cf228f
 
 
 
 
0d3afce
8cf228f
 
 
b273b9d
dede4f0
 
 
afe3886
dede4f0
716cb78
0c2d8eb
716cb78
 
 
66662af
afe3886
 
dede4f0
 
 
a5c2203
56c7140
dede4f0
56c7140
 
 
 
 
 
 
 
716cb78
56c7140
 
 
 
 
 
 
 
 
 
dede4f0
afe3886
56c7140
afe3886
56c7140
 
 
 
 
 
 
 
 
a5c2203
afe3886
d63c3cd
b2f4808
 
8cf228f
 
 
 
 
 
 
b273b9d
0c2d8eb
a5c2203
8cf228f
a5c2203
 
 
 
 
 
716cb78
dede4f0
afe3886
56c7140
1420ae0
716cb78
a5c2203
 
 
1420ae0
afe3886
56c7140
 
 
 
 
 
716cb78
56c7140
1420ae0
56c7140
 
 
afe3886
56c7140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe3886
56c7140
afe3886
56c7140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c2203
56c7140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c2203
afe3886
56c7140
 
66662af
6f2f71c
b273b9d
56c7140
 
 
 
 
 
5af6059
56c7140
 
716cb78
afe3886
56c7140
 
a5c2203
afe3886
56c7140
 
a5c2203
56c7140
b273b9d
afe3886
56c7140
 
 
66662af
56c7140
 
 
 
 
 
 
 
 
 
 
66662af
56c7140
 
 
afe3886
56c7140
 
 
 
 
 
 
 
 
 
 
 
afe3886
56c7140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66662af
716cb78
 
56c7140
66662af
 
 
 
 
716cb78
66662af
8cf228f
 
 
716cb78
8cf228f
b273b9d
 
 
56c7140
b273b9d
1420ae0
 
 
56c7140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420ae0
66662af
 
56c7140
 
 
 
66662af
56c7140
 
 
 
 
 
1420ae0
56c7140
1420ae0
 
716cb78
 
 
1420ae0
56c7140
 
716cb78
56c7140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716cb78
 
1420ae0
56c7140
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import argparse
import json
import os
import shutil
from collections import defaultdict
from datetime import datetime
from tempfile import TemporaryDirectory
from typing import Dict, List, Optional, Set, Tuple

import torch

from huggingface_hub import HfApi, Repository, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file

REPORT_DESCRIPTION = """
Este es un reporte automatizado creado con una herramienta de conversión personalizada.

Este nuevo archivo es equivalente a `pytorch_model.bin` pero es seguro en el sentido de que
no se puede inyectar código arbitrario en él.

Estos archivos también cargan mucho más rápido que su contraparte de PyTorch:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb

Los widgets en la página de tu modelo funcionarán usando este modelo, asegurando que el archivo realmente funcione.

Si encuentras algún problema: por favor repórtalo en el siguiente enlace: https://huggingface.co/spaces/safetensors/convert/discussions

Siéntete libre de ignorar este reporte.
"""

ConversionResult = Tuple[List[str], List[Tuple[str, "Exception"]]]

def _remove_duplicate_names(state_dict: Dict[str, torch.Tensor], *, preferred_names: List[str] = None, discard_names: List[str] = None) -> Dict[str, List[str]]:
    if preferred_names is None:
        preferred_names = []
    preferred_names = set(preferred_names)
    if discard_names is None:
        discard_names = []
    discard_names = set(discard_names)
    shareds = _find_shared_tensors(state_dict)
    to_remove = defaultdict(list)
    for shared in shareds:
        complete_names = set([name for name in shared if _is_complete(state_dict[name])])
        if not complete_names:
            if len(shared) == 1:
                name = list(shared)[0]
                state_dict[name] = state_dict[name].clone()
                complete_names = {name}
            else:
                raise RuntimeError(f"Error al intentar encontrar nombres para remover al guardar el state dict, pero no se encontró un nombre adecuado para mantener entre: {shared}. Ninguno cubre todo el almacenamiento. Rechazando guardar/cargar el modelo ya que podrías estar almacenando mucha más memoria de la necesaria. Por favor, refiérete a https://huggingface.co/docs/safetensors/torch_shared_tensors para más información. O abre un issue.")
        keep_name = sorted(list(complete_names))[0]
        preferred = complete_names.difference(discard_names)
        if preferred:
            keep_name = sorted(list(preferred))[0]
        if preferred_names:
            preferred = preferred_names.intersection(complete_names)
            if preferred:
                keep_name = sorted(list(preferred))[0]
        for name in sorted(shared):
            if name != keep_name:
                to_remove[keep_name].append(name)
    return to_remove

def get_discard_names(model_id: str, revision: Optional[str], folder: str, token: Optional[str]) -> List[str]:
    try:
        import transformers
        config_filename = hf_hub_download(model_id, revision=revision, filename="config.json", token=token, cache_dir=folder)
        with open(config_filename, "r") as f:
            config = json.load(f)
        architecture = config["architectures"][0]
        class_ = getattr(transformers, architecture)
        discard_names = getattr(class_, "_tied_weights_keys", [])
    except Exception:
        discard_names = []
    return discard_names

def check_file_size(sf_filename: str, pt_filename: str):
    sf_size = os.stat(sf_filename).st_size
    pt_size = os.stat(pt_filename).st_size
    if (sf_size - pt_size) / pt_size > 0.01:
        raise RuntimeError(f"La diferencia de tamaño de archivo es mayor al 1%:\n - {sf_filename}: {sf_size} bytes\n - {pt_filename}: {pt_size} bytes")

def rename(model_id: str, pt_filename: str) -> str:
    filename, ext = os.path.splitext(pt_filename)
    base_name = os.path.basename(filename)
    safetensors_name = f"{model_id.replace('/', '_')}_{base_name}.safetensors"
    return safetensors_name

def convert_multi(model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult:
    filename = hf_hub_download(repo_id=model_id, revision=revision, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder)
    with open(filename, "r") as f:
        data = json.load(f)
    filenames = set(data["weight_map"].values())
    local_filenames = []
    errors = []
    for filename in filenames:
        try:
            pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder)
            sf_filename = rename(model_id, filename)
            sf_filepath = os.path.join(folder, sf_filename)
            convert_file(pt_filename, sf_filepath, discard_names=discard_names)
            local_filenames.append(sf_filepath)
        except Exception as e:
            errors.append((filename, e))
    index = os.path.join(folder, f"{model_id.replace('/', '_')}_model.safetensors.index.json")
    try:
        with open(index, "w") as f:
            newdata = {k: v for k, v in data.items()}
            newmap = {k: rename(model_id, v) for k, v in data["weight_map"].items()}
            newdata["weight_map"] = newmap
            json.dump(newdata, f, indent=4)
        local_filenames.append(index)
    except Exception as e:
        errors.append((index, e))
    return local_filenames, errors

def convert_single(model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult:
    try:
        pt_filename = hf_hub_download(repo_id=model_id, revision=revision, filename="pytorch_model.bin", token=token, cache_dir=folder)
        sf_name = rename(model_id, "pytorch_model.bin")
        sf_filepath = os.path.join(folder, sf_name)
        convert_file(pt_filename, sf_filepath, discard_names)
        local_filenames = [sf_filepath]
        errors = []
    except Exception as e:
        local_filenames = []
        errors = [("pytorch_model.bin", e)]
    return local_filenames, errors

def convert_file(pt_filename: str, sf_filename: str, discard_names: List[str]):
    loaded = torch.load(pt_filename, map_location="cpu", weights_only=True)
    if "state_dict" in loaded:
        loaded = loaded["state_dict"]
    to_removes = _remove_duplicate_names(loaded, discard_names=discard_names)
    metadata = {"format": "pt"}
    for kept_name, to_remove_group in to_removes.items():
        for to_remove in to_remove_group:
            if to_remove not in metadata:
                metadata[to_remove] = kept_name
            del loaded[to_remove]
    loaded = {k: v.contiguous() for k, v in loaded.items()}
    dirname = os.path.dirname(sf_filename)
    os.makedirs(dirname, exist_ok=True)
    save_file(loaded, sf_filename, metadata=metadata)
    check_file_size(sf_filename, pt_filename)
    reloaded = load_file(sf_filename)
    for k in loaded:
        pt_tensor = loaded[k]
        sf_tensor = reloaded[k]
        if not torch.equal(pt_tensor, sf_tensor):
            raise RuntimeError(f"Los tensores de salida no coinciden para la clave {k}")

def convert_generic(model_id: str, *, revision: Optional[str], folder: str, filenames: Set[str], token: Optional[str]) -> ConversionResult:
    local_filenames = []
    errors = []
    extensions = set([".bin", ".ckpt", ".pth"])
    for filename in filenames:
        prefix, ext = os.path.splitext(filename)
        if ext in extensions:
            try:
                pt_filename = hf_hub_download(model_id, revision=revision, filename=filename, token=token, cache_dir=folder)
                dirname, raw_filename = os.path.split(filename)
                if raw_filename in {"pytorch_model.bin", "pytorch_model.pth"}:
                    sf_in_repo = rename(model_id, raw_filename)
                else:
                    sf_in_repo = rename(model_id, filename)
                sf_filepath = os.path.join(folder, sf_in_repo)
                convert_file(pt_filename, sf_filepath, discard_names=[])
                local_filenames.append(sf_filepath)
            except Exception as e:
                errors.append((filename, e))
    return local_filenames, errors

def prepare_target_repo_files(model_id: str, revision: Optional[str], folder: str, token: str, repo_dir: str):
    api = HfApi()
    try:
        common_files = [
            ".gitattributes",
            "LICENSE.txt",
            "README.md",
            "USE_POLICY.md",
            "config.json",
            "generation_config.json",
            "special_tokens_map.json",
            "tokenizer.json",
            "tokenizer_config.json"
        ]
        for file in common_files:
            try:
                file_path = hf_hub_download(repo_id=model_id, revision=revision, filename=file, token=token, cache_dir=folder)
                shutil.copy(file_path, repo_dir)
            except Exception:
                if file == ".gitattributes":
                    gitattributes_content = "model.safetensors filter=safetensors diff=safetensors merge=safetensors -text\n"
                    with open(os.path.join(repo_dir, file), "w") as f:
                        f.write(gitattributes_content)
                elif file == "LICENSE.txt":
                    default_license = "MIT License\n\nCopyright (c) 2024"
                    with open(os.path.join(repo_dir, file), "w") as f:
                        f.write(default_license)
                elif file == "README.md":
                    readme_content = f"# {model_id.replace('/', ' ').title()}\n\nModelo convertido a safetensors."
                    with open(os.path.join(repo_dir, file), "w") as f:
                        f.write(readme_content)
                elif file == "USE_POLICY.md":
                    use_policy_content = "### Política de Uso\n\nEste modelo se distribuye bajo términos de uso estándar."
                    with open(os.path.join(repo_dir, file), "w") as f:
                        f.write(use_policy_content)
                elif file in {"config.json", "generation_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json"}:
                    default_json_content = {}
                    with open(os.path.join(repo_dir, file), "w") as f:
                        json.dump(default_json_content, f, indent=4)
    except Exception as e:
        raise e

def generate_report(model_id: str, local_filenames: List[str], errors: List[Tuple[str, Exception]], output_md_path: str):
    report_lines = [
        f"# Reporte de Conversión para el Modelo `{model_id}`",
        f"Fecha y Hora: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
        "",
        "## Archivos Convertidos Exitosamente",
    ]
    if local_filenames:
        for filename in local_filenames:
            report_lines.append(f"- `{os.path.basename(filename)}`")
    else:
        report_lines.append("No se convirtieron archivos.")
    report_lines.append("")
    report_lines.append("## Errores Durante la Conversión")
    if errors:
        for filename, error in errors:
            report_lines.append(f"- **Archivo**: `{os.path.basename(filename)}`\n  - **Error**: {error}")
    else:
        report_lines.append("No hubo errores durante la conversión.")
    report_content_md = "\n".join(report_lines)
    with open(output_md_path, "w") as f:
        f.write(report_content_md)
    report_json = {
        "model_id": model_id,
        "timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
        "converted_files": [os.path.basename(f) for f in local_filenames],
        "errors": [{"file": os.path.basename(f), "error": str(e)} for f, e in errors],
        "description": REPORT_DESCRIPTION.strip()
    }
    json_output_path = os.path.splitext(output_md_path)[0] + "_report.json"
    with open(json_output_path, "w") as f:
        json.dump(report_json, f, indent=4)
    print(f"Reportes generados en: {output_md_path} y {json_output_path}")

def convert(model_id: str, revision: Optional[str] = None, force: bool = False, token: Optional[str] = None) -> ConversionResult:
    api = HfApi()
    info = api.model_info(repo_id=model_id, revision=revision)
    filenames = set(s.rfilename for s in info.siblings)
    with TemporaryDirectory() as d:
        folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
        os.makedirs(folder, exist_ok=True)
        local_filenames = []
        errors = []
        if not force and any(filename.endswith(".safetensors") for filename in filenames):
            print(f"El modelo `{model_id}` ya tiene archivos `.safetensors` convertidos. Usando report existente o forzando con --force.")
        else:
            library_name = getattr(info, "library_name", None)
            if library_name == "transformers":
                discard_names = get_discard_names(model_id, revision=revision, folder=folder, token=token)
                if "pytorch_model.bin" in filenames or "pytorch_model.pth" in filenames:
                    converted, conv_errors = convert_single(model_id, revision=revision, folder=folder, token=token, discard_names=discard_names)
                    local_filenames.extend(converted)
                    errors.extend(conv_errors)
                elif "pytorch_model.bin.index.json" in filenames:
                    converted, conv_errors = convert_multi(model_id, revision=revision, folder=folder, token=token, discard_names=discard_names)
                    local_filenames.extend(converted)
                    errors.extend(conv_errors)
                else:
                    print(f"El modelo `{model_id}` no parece ser un modelo válido de PyTorch. No se puede convertir.")
            else:
                converted, conv_errors = convert_generic(model_id, revision=revision, folder=folder, filenames=filenames, token=token)
                local_filenames.extend(converted)
                errors.extend(conv_errors)
    return local_filenames, errors

def read_token(token_file: Optional[str]) -> Optional[str]:
    if token_file:
        if os.path.isfile(token_file):
            with open(token_file, "r") as f:
                token = f.read().strip()
                return token
        else:
            print(f"El archivo de token especificado no existe: {token_file}")
            return None
    else:
        return os.getenv("HF_TOKEN")

def create_target_repo(model_id: str, api: HfApi, token: str) -> str:
    target_repo_id = f"{api.whoami(token=token)['name']}/{model_id.replace('/', '_')}_safetensors"
    try:
        api.create_repo(name=f"{model_id.replace('/', '_')}_safetensors", repo_type="model", exist_ok=True, token=token)
        print(f"Repositorio creado o ya existente: {target_repo_id}")
    except Exception as e:
        print(f"Error al crear el repositorio `{target_repo_id}`: {e}")
        raise e
    return target_repo_id

def upload_to_hf(local_filenames: List[str], target_repo_id: str, token: str, additional_files: List[str]):
    repo_dir = "./temp_repo"
    if os.path.exists(repo_dir):
        shutil.rmtree(repo_dir)
    os.makedirs(repo_dir, exist_ok=True)
    try:
        repo = Repository(local_dir=repo_dir, clone_from=target_repo_id, use_auth_token=token)
        for file_path in local_filenames:
            shutil.copy(file_path, repo_dir)
        for file_path in additional_files:
            shutil.copy(file_path, repo_dir)
        repo.git_add(auto_lfs_track=True)
        repo.git_commit("Añadiendo archivos safetensors convertidos")
        repo.git_push()
        print(f"Archivos subidos exitosamente al repositorio: {target_repo_id}")
    except Exception as e:
        print(f"Error al subir archivos al repositorio `{target_repo_id}`: {e}")
        raise e
    finally:
        shutil.rmtree(repo_dir)

def main():
    DESCRIPTION = """
    Herramienta de utilidad simple para convertir automáticamente algunos pesos en el hub al formato `safetensors`.
    Actualmente exclusiva para PyTorch.
    Funciona descargando los pesos (PT), convirtiéndolos localmente, subiéndolos a tu propio perfil en Hugging Face Hub y generando reportes en formato Markdown y JSON.
    """
    parser = argparse.ArgumentParser(description=DESCRIPTION)
    parser.add_argument(
        "model_id",
        type=str,
        help="El nombre del modelo en el hub para convertir. Por ejemplo, `gpt2` o `facebook/wav2vec2-base-960h`",
    )
    parser.add_argument(
        "--revision",
        type=str,
        help="La revisión a convertir",
    )
    parser.add_argument(
        "--force",
        action="store_true",
        help="Forzar la conversión incluso si ya existen archivos `.safetensors` en el modelo.",
    )
    parser.add_argument(
        "-y",
        action="store_true",
        help="Ignorar prompt de seguridad",
    )
    parser.add_argument(
        "--output",
        type=str,
        default="conversion_report.md",
        help="Ruta donde se guardará el reporte de conversión en formato Markdown.",
    )
    parser.add_argument(
        "--output-json",
        type=str,
        default=None,
        help="Ruta donde se guardará el reporte de conversión en formato JSON. Si no se especifica, se creará en la misma ubicación que el reporte Markdown.",
    )
    parser.add_argument(
        "--token-file",
        type=str,
        default=None,
        help="Ruta al archivo que contiene el token de autenticación de Hugging Face. Si no se especifica, se intentará leer desde la variable de entorno 'HF_TOKEN'.",
    )
    args = parser.parse_args()
    model_id = args.model_id
    token = read_token(args.token_file)
    if not token:
        print("No se proporcionó un token de autenticación válido. Por favor, proporciónalo mediante --token-file o establece la variable de entorno 'HF_TOKEN'.")
        return
    api = HfApi()
    try:
        user_info = api.whoami(token=token)
        print(f"Autenticado como: {user_info['name']}")
    except Exception as e:
        print(f"No se pudo autenticar con Hugging Face Hub: {e}")
        return
    if args.y:
        proceed = True
    else:
        txt = input(
            "Este script de conversión desenpaca un archivo pickled, lo cual es inherentemente inseguro. Si no confías en este archivo, te invitamos a usar "
            "https://huggingface.co/spaces/safetensors/convert o Google Colab u otra solución alojada para evitar posibles problemas con este archivo."
            " ¿Continuar [Y/n] ? "
        )
        proceed = txt.lower() in {"", "y", "yes"}
    if proceed:
        try:
            with TemporaryDirectory() as d:
                folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
                os.makedirs(folder, exist_ok=True)
                local_filenames, errors = convert(model_id, revision=args.revision, force=args.force, token=token)
                target_repo_id = create_target_repo(model_id, api, token)
                with TemporaryDirectory() as repo_temp_dir:
                    prepare_target_repo_files(model_id, args.revision, folder, token, repo_temp_dir)
                    additional_files = [os.path.join(repo_temp_dir, f) for f in os.listdir(repo_temp_dir)]
                    if local_filenames or additional_files:
                        upload_to_hf(local_filenames, target_repo_id, token, additional_files)
                        print(f"Archivos convertidos y adicionales subidos exitosamente a: {target_repo_id}")
                    else:
                        print("No hay archivos convertidos ni adicionales para subir.")
                output_md = args.output
                if args.output_json:
                    output_json = args.output_json
                else:
                    output_json = os.path.splitext(output_md)[0] + "_report.json"
                generate_report(model_id, local_filenames, errors, output_md)
        except Exception as e:
            print(f"Ocurrió un error inesperado: {e}")
    else:
        print(f"La respuesta fue '{txt}', abortando.")

if __name__ == "__main__":
    main()