File size: 20,297 Bytes
66662af dede4f0 b273b9d 56c7140 a5c2203 1420ae0 66662af 56c7140 dede4f0 0d3afce 66662af 56c7140 66662af 56c7140 7a97ac2 56c7140 7a97ac2 56c7140 7a97ac2 afe3886 2a91a35 56c7140 7a97ac2 56c7140 0d3afce afe3886 8cf228f 0d3afce 8cf228f afe3886 8cf228f 0d3afce afe3886 8cf228f 0d3afce 8cf228f b273b9d dede4f0 afe3886 dede4f0 716cb78 0c2d8eb 716cb78 66662af afe3886 dede4f0 a5c2203 56c7140 dede4f0 56c7140 716cb78 56c7140 dede4f0 afe3886 56c7140 afe3886 56c7140 a5c2203 afe3886 d63c3cd b2f4808 8cf228f b273b9d 0c2d8eb a5c2203 8cf228f a5c2203 716cb78 dede4f0 afe3886 56c7140 1420ae0 716cb78 a5c2203 1420ae0 afe3886 56c7140 716cb78 56c7140 1420ae0 56c7140 afe3886 56c7140 afe3886 56c7140 afe3886 56c7140 a5c2203 56c7140 a5c2203 afe3886 56c7140 66662af 6f2f71c b273b9d 56c7140 5af6059 56c7140 716cb78 afe3886 56c7140 a5c2203 afe3886 56c7140 a5c2203 56c7140 b273b9d afe3886 56c7140 66662af 56c7140 66662af 56c7140 afe3886 56c7140 afe3886 56c7140 66662af 716cb78 56c7140 66662af 716cb78 66662af 8cf228f 716cb78 8cf228f b273b9d 56c7140 b273b9d 1420ae0 56c7140 1420ae0 66662af 56c7140 66662af 56c7140 1420ae0 56c7140 1420ae0 716cb78 1420ae0 56c7140 716cb78 56c7140 716cb78 1420ae0 56c7140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import argparse
import json
import os
import shutil
from collections import defaultdict
from datetime import datetime
from tempfile import TemporaryDirectory
from typing import Dict, List, Optional, Set, Tuple
import torch
from huggingface_hub import HfApi, Repository, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file
REPORT_DESCRIPTION = """
Este es un reporte automatizado creado con una herramienta de conversión personalizada.
Este nuevo archivo es equivalente a `pytorch_model.bin` pero es seguro en el sentido de que
no se puede inyectar código arbitrario en él.
Estos archivos también cargan mucho más rápido que su contraparte de PyTorch:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb
Los widgets en la página de tu modelo funcionarán usando este modelo, asegurando que el archivo realmente funcione.
Si encuentras algún problema: por favor repórtalo en el siguiente enlace: https://huggingface.co/spaces/safetensors/convert/discussions
Siéntete libre de ignorar este reporte.
"""
ConversionResult = Tuple[List[str], List[Tuple[str, "Exception"]]]
def _remove_duplicate_names(state_dict: Dict[str, torch.Tensor], *, preferred_names: List[str] = None, discard_names: List[str] = None) -> Dict[str, List[str]]:
if preferred_names is None:
preferred_names = []
preferred_names = set(preferred_names)
if discard_names is None:
discard_names = []
discard_names = set(discard_names)
shareds = _find_shared_tensors(state_dict)
to_remove = defaultdict(list)
for shared in shareds:
complete_names = set([name for name in shared if _is_complete(state_dict[name])])
if not complete_names:
if len(shared) == 1:
name = list(shared)[0]
state_dict[name] = state_dict[name].clone()
complete_names = {name}
else:
raise RuntimeError(f"Error al intentar encontrar nombres para remover al guardar el state dict, pero no se encontró un nombre adecuado para mantener entre: {shared}. Ninguno cubre todo el almacenamiento. Rechazando guardar/cargar el modelo ya que podrías estar almacenando mucha más memoria de la necesaria. Por favor, refiérete a https://huggingface.co/docs/safetensors/torch_shared_tensors para más información. O abre un issue.")
keep_name = sorted(list(complete_names))[0]
preferred = complete_names.difference(discard_names)
if preferred:
keep_name = sorted(list(preferred))[0]
if preferred_names:
preferred = preferred_names.intersection(complete_names)
if preferred:
keep_name = sorted(list(preferred))[0]
for name in sorted(shared):
if name != keep_name:
to_remove[keep_name].append(name)
return to_remove
def get_discard_names(model_id: str, revision: Optional[str], folder: str, token: Optional[str]) -> List[str]:
try:
import transformers
config_filename = hf_hub_download(model_id, revision=revision, filename="config.json", token=token, cache_dir=folder)
with open(config_filename, "r") as f:
config = json.load(f)
architecture = config["architectures"][0]
class_ = getattr(transformers, architecture)
discard_names = getattr(class_, "_tied_weights_keys", [])
except Exception:
discard_names = []
return discard_names
def check_file_size(sf_filename: str, pt_filename: str):
sf_size = os.stat(sf_filename).st_size
pt_size = os.stat(pt_filename).st_size
if (sf_size - pt_size) / pt_size > 0.01:
raise RuntimeError(f"La diferencia de tamaño de archivo es mayor al 1%:\n - {sf_filename}: {sf_size} bytes\n - {pt_filename}: {pt_size} bytes")
def rename(model_id: str, pt_filename: str) -> str:
filename, ext = os.path.splitext(pt_filename)
base_name = os.path.basename(filename)
safetensors_name = f"{model_id.replace('/', '_')}_{base_name}.safetensors"
return safetensors_name
def convert_multi(model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult:
filename = hf_hub_download(repo_id=model_id, revision=revision, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder)
with open(filename, "r") as f:
data = json.load(f)
filenames = set(data["weight_map"].values())
local_filenames = []
errors = []
for filename in filenames:
try:
pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder)
sf_filename = rename(model_id, filename)
sf_filepath = os.path.join(folder, sf_filename)
convert_file(pt_filename, sf_filepath, discard_names=discard_names)
local_filenames.append(sf_filepath)
except Exception as e:
errors.append((filename, e))
index = os.path.join(folder, f"{model_id.replace('/', '_')}_model.safetensors.index.json")
try:
with open(index, "w") as f:
newdata = {k: v for k, v in data.items()}
newmap = {k: rename(model_id, v) for k, v in data["weight_map"].items()}
newdata["weight_map"] = newmap
json.dump(newdata, f, indent=4)
local_filenames.append(index)
except Exception as e:
errors.append((index, e))
return local_filenames, errors
def convert_single(model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult:
try:
pt_filename = hf_hub_download(repo_id=model_id, revision=revision, filename="pytorch_model.bin", token=token, cache_dir=folder)
sf_name = rename(model_id, "pytorch_model.bin")
sf_filepath = os.path.join(folder, sf_name)
convert_file(pt_filename, sf_filepath, discard_names)
local_filenames = [sf_filepath]
errors = []
except Exception as e:
local_filenames = []
errors = [("pytorch_model.bin", e)]
return local_filenames, errors
def convert_file(pt_filename: str, sf_filename: str, discard_names: List[str]):
loaded = torch.load(pt_filename, map_location="cpu", weights_only=True)
if "state_dict" in loaded:
loaded = loaded["state_dict"]
to_removes = _remove_duplicate_names(loaded, discard_names=discard_names)
metadata = {"format": "pt"}
for kept_name, to_remove_group in to_removes.items():
for to_remove in to_remove_group:
if to_remove not in metadata:
metadata[to_remove] = kept_name
del loaded[to_remove]
loaded = {k: v.contiguous() for k, v in loaded.items()}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata=metadata)
check_file_size(sf_filename, pt_filename)
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f"Los tensores de salida no coinciden para la clave {k}")
def convert_generic(model_id: str, *, revision: Optional[str], folder: str, filenames: Set[str], token: Optional[str]) -> ConversionResult:
local_filenames = []
errors = []
extensions = set([".bin", ".ckpt", ".pth"])
for filename in filenames:
prefix, ext = os.path.splitext(filename)
if ext in extensions:
try:
pt_filename = hf_hub_download(model_id, revision=revision, filename=filename, token=token, cache_dir=folder)
dirname, raw_filename = os.path.split(filename)
if raw_filename in {"pytorch_model.bin", "pytorch_model.pth"}:
sf_in_repo = rename(model_id, raw_filename)
else:
sf_in_repo = rename(model_id, filename)
sf_filepath = os.path.join(folder, sf_in_repo)
convert_file(pt_filename, sf_filepath, discard_names=[])
local_filenames.append(sf_filepath)
except Exception as e:
errors.append((filename, e))
return local_filenames, errors
def prepare_target_repo_files(model_id: str, revision: Optional[str], folder: str, token: str, repo_dir: str):
api = HfApi()
try:
common_files = [
".gitattributes",
"LICENSE.txt",
"README.md",
"USE_POLICY.md",
"config.json",
"generation_config.json",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json"
]
for file in common_files:
try:
file_path = hf_hub_download(repo_id=model_id, revision=revision, filename=file, token=token, cache_dir=folder)
shutil.copy(file_path, repo_dir)
except Exception:
if file == ".gitattributes":
gitattributes_content = "model.safetensors filter=safetensors diff=safetensors merge=safetensors -text\n"
with open(os.path.join(repo_dir, file), "w") as f:
f.write(gitattributes_content)
elif file == "LICENSE.txt":
default_license = "MIT License\n\nCopyright (c) 2024"
with open(os.path.join(repo_dir, file), "w") as f:
f.write(default_license)
elif file == "README.md":
readme_content = f"# {model_id.replace('/', ' ').title()}\n\nModelo convertido a safetensors."
with open(os.path.join(repo_dir, file), "w") as f:
f.write(readme_content)
elif file == "USE_POLICY.md":
use_policy_content = "### Política de Uso\n\nEste modelo se distribuye bajo términos de uso estándar."
with open(os.path.join(repo_dir, file), "w") as f:
f.write(use_policy_content)
elif file in {"config.json", "generation_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json"}:
default_json_content = {}
with open(os.path.join(repo_dir, file), "w") as f:
json.dump(default_json_content, f, indent=4)
except Exception as e:
raise e
def generate_report(model_id: str, local_filenames: List[str], errors: List[Tuple[str, Exception]], output_md_path: str):
report_lines = [
f"# Reporte de Conversión para el Modelo `{model_id}`",
f"Fecha y Hora: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
"",
"## Archivos Convertidos Exitosamente",
]
if local_filenames:
for filename in local_filenames:
report_lines.append(f"- `{os.path.basename(filename)}`")
else:
report_lines.append("No se convirtieron archivos.")
report_lines.append("")
report_lines.append("## Errores Durante la Conversión")
if errors:
for filename, error in errors:
report_lines.append(f"- **Archivo**: `{os.path.basename(filename)}`\n - **Error**: {error}")
else:
report_lines.append("No hubo errores durante la conversión.")
report_content_md = "\n".join(report_lines)
with open(output_md_path, "w") as f:
f.write(report_content_md)
report_json = {
"model_id": model_id,
"timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
"converted_files": [os.path.basename(f) for f in local_filenames],
"errors": [{"file": os.path.basename(f), "error": str(e)} for f, e in errors],
"description": REPORT_DESCRIPTION.strip()
}
json_output_path = os.path.splitext(output_md_path)[0] + "_report.json"
with open(json_output_path, "w") as f:
json.dump(report_json, f, indent=4)
print(f"Reportes generados en: {output_md_path} y {json_output_path}")
def convert(model_id: str, revision: Optional[str] = None, force: bool = False, token: Optional[str] = None) -> ConversionResult:
api = HfApi()
info = api.model_info(repo_id=model_id, revision=revision)
filenames = set(s.rfilename for s in info.siblings)
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder, exist_ok=True)
local_filenames = []
errors = []
if not force and any(filename.endswith(".safetensors") for filename in filenames):
print(f"El modelo `{model_id}` ya tiene archivos `.safetensors` convertidos. Usando report existente o forzando con --force.")
else:
library_name = getattr(info, "library_name", None)
if library_name == "transformers":
discard_names = get_discard_names(model_id, revision=revision, folder=folder, token=token)
if "pytorch_model.bin" in filenames or "pytorch_model.pth" in filenames:
converted, conv_errors = convert_single(model_id, revision=revision, folder=folder, token=token, discard_names=discard_names)
local_filenames.extend(converted)
errors.extend(conv_errors)
elif "pytorch_model.bin.index.json" in filenames:
converted, conv_errors = convert_multi(model_id, revision=revision, folder=folder, token=token, discard_names=discard_names)
local_filenames.extend(converted)
errors.extend(conv_errors)
else:
print(f"El modelo `{model_id}` no parece ser un modelo válido de PyTorch. No se puede convertir.")
else:
converted, conv_errors = convert_generic(model_id, revision=revision, folder=folder, filenames=filenames, token=token)
local_filenames.extend(converted)
errors.extend(conv_errors)
return local_filenames, errors
def read_token(token_file: Optional[str]) -> Optional[str]:
if token_file:
if os.path.isfile(token_file):
with open(token_file, "r") as f:
token = f.read().strip()
return token
else:
print(f"El archivo de token especificado no existe: {token_file}")
return None
else:
return os.getenv("HF_TOKEN")
def create_target_repo(model_id: str, api: HfApi, token: str) -> str:
target_repo_id = f"{api.whoami(token=token)['name']}/{model_id.replace('/', '_')}_safetensors"
try:
api.create_repo(name=f"{model_id.replace('/', '_')}_safetensors", repo_type="model", exist_ok=True, token=token)
print(f"Repositorio creado o ya existente: {target_repo_id}")
except Exception as e:
print(f"Error al crear el repositorio `{target_repo_id}`: {e}")
raise e
return target_repo_id
def upload_to_hf(local_filenames: List[str], target_repo_id: str, token: str, additional_files: List[str]):
repo_dir = "./temp_repo"
if os.path.exists(repo_dir):
shutil.rmtree(repo_dir)
os.makedirs(repo_dir, exist_ok=True)
try:
repo = Repository(local_dir=repo_dir, clone_from=target_repo_id, use_auth_token=token)
for file_path in local_filenames:
shutil.copy(file_path, repo_dir)
for file_path in additional_files:
shutil.copy(file_path, repo_dir)
repo.git_add(auto_lfs_track=True)
repo.git_commit("Añadiendo archivos safetensors convertidos")
repo.git_push()
print(f"Archivos subidos exitosamente al repositorio: {target_repo_id}")
except Exception as e:
print(f"Error al subir archivos al repositorio `{target_repo_id}`: {e}")
raise e
finally:
shutil.rmtree(repo_dir)
def main():
DESCRIPTION = """
Herramienta de utilidad simple para convertir automáticamente algunos pesos en el hub al formato `safetensors`.
Actualmente exclusiva para PyTorch.
Funciona descargando los pesos (PT), convirtiéndolos localmente, subiéndolos a tu propio perfil en Hugging Face Hub y generando reportes en formato Markdown y JSON.
"""
parser = argparse.ArgumentParser(description=DESCRIPTION)
parser.add_argument(
"model_id",
type=str,
help="El nombre del modelo en el hub para convertir. Por ejemplo, `gpt2` o `facebook/wav2vec2-base-960h`",
)
parser.add_argument(
"--revision",
type=str,
help="La revisión a convertir",
)
parser.add_argument(
"--force",
action="store_true",
help="Forzar la conversión incluso si ya existen archivos `.safetensors` en el modelo.",
)
parser.add_argument(
"-y",
action="store_true",
help="Ignorar prompt de seguridad",
)
parser.add_argument(
"--output",
type=str,
default="conversion_report.md",
help="Ruta donde se guardará el reporte de conversión en formato Markdown.",
)
parser.add_argument(
"--output-json",
type=str,
default=None,
help="Ruta donde se guardará el reporte de conversión en formato JSON. Si no se especifica, se creará en la misma ubicación que el reporte Markdown.",
)
parser.add_argument(
"--token-file",
type=str,
default=None,
help="Ruta al archivo que contiene el token de autenticación de Hugging Face. Si no se especifica, se intentará leer desde la variable de entorno 'HF_TOKEN'.",
)
args = parser.parse_args()
model_id = args.model_id
token = read_token(args.token_file)
if not token:
print("No se proporcionó un token de autenticación válido. Por favor, proporciónalo mediante --token-file o establece la variable de entorno 'HF_TOKEN'.")
return
api = HfApi()
try:
user_info = api.whoami(token=token)
print(f"Autenticado como: {user_info['name']}")
except Exception as e:
print(f"No se pudo autenticar con Hugging Face Hub: {e}")
return
if args.y:
proceed = True
else:
txt = input(
"Este script de conversión desenpaca un archivo pickled, lo cual es inherentemente inseguro. Si no confías en este archivo, te invitamos a usar "
"https://huggingface.co/spaces/safetensors/convert o Google Colab u otra solución alojada para evitar posibles problemas con este archivo."
" ¿Continuar [Y/n] ? "
)
proceed = txt.lower() in {"", "y", "yes"}
if proceed:
try:
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder, exist_ok=True)
local_filenames, errors = convert(model_id, revision=args.revision, force=args.force, token=token)
target_repo_id = create_target_repo(model_id, api, token)
with TemporaryDirectory() as repo_temp_dir:
prepare_target_repo_files(model_id, args.revision, folder, token, repo_temp_dir)
additional_files = [os.path.join(repo_temp_dir, f) for f in os.listdir(repo_temp_dir)]
if local_filenames or additional_files:
upload_to_hf(local_filenames, target_repo_id, token, additional_files)
print(f"Archivos convertidos y adicionales subidos exitosamente a: {target_repo_id}")
else:
print("No hay archivos convertidos ni adicionales para subir.")
output_md = args.output
if args.output_json:
output_json = args.output_json
else:
output_json = os.path.splitext(output_md)[0] + "_report.json"
generate_report(model_id, local_filenames, errors, output_md)
except Exception as e:
print(f"Ocurrió un error inesperado: {e}")
else:
print(f"La respuesta fue '{txt}', abortando.")
if __name__ == "__main__":
main()
|