File size: 20,709 Bytes
561c629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
from math import prod

import torch
import torch.nn as nn
from architecture.grl_common.ops import (
    bchw_to_blc,
    blc_to_bchw,
    calculate_mask,
    window_partition,
    window_reverse,
)
from timm.models.layers import DropPath, to_2tuple, trunc_normal_


class Mlp(nn.Module):
    """MLP as used in Vision Transformer, MLP-Mixer and related networks"""

    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        drop_probs = to_2tuple(drop)

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class WindowAttentionV1(nn.Module):
    r"""Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(
        self,
        dim,
        window_size,
        num_heads,
        qkv_bias=True,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        use_pe=True,
    ):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5
        self.use_pe = use_pe

        if self.use_pe:
            # define a parameter table of relative position bias
            ws = self.window_size
            table = torch.zeros((2 * ws[0] - 1) * (2 * ws[1] - 1), num_heads)
            self.relative_position_bias_table = nn.Parameter(table)
            # 2*Wh-1 * 2*Ww-1, nH
            trunc_normal_(self.relative_position_bias_table, std=0.02)

            self.get_relative_position_index(self.window_size)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)

        self.proj_drop = nn.Dropout(proj_drop)

        self.softmax = nn.Softmax(dim=-1)

    def get_relative_position_index(self, window_size):
        # get pair-wise relative position index for each token inside the window
        coord_h = torch.arange(window_size[0])
        coord_w = torch.arange(window_size[1])
        coords = torch.stack(torch.meshgrid([coord_h, coord_w]))  # 2, Wh, Ww
        coords = torch.flatten(coords, 1)  # 2, Wh*Ww
        coords = coords[:, :, None] - coords[:, None, :]  # 2, Wh*Ww, Wh*Ww
        coords = coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        coords[:, :, 1] += window_size[1] - 1
        coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape

        # qkv projection
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        # attention map
        q = q * self.scale
        attn = q @ k.transpose(-2, -1)

        # positional encoding
        if self.use_pe:
            win_dim = prod(self.window_size)
            bias = self.relative_position_bias_table[
                self.relative_position_index.view(-1)
            ]
            bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous()
            # nH, Wh*Ww, Wh*Ww
            attn = attn + bias.unsqueeze(0)

        # shift attention mask
        if mask is not None:
            nW = mask.shape[0]
            mask = mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask
            attn = attn.view(-1, self.num_heads, N, N)

        # attention
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)

        # output projection
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}"

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops


class WindowAttentionWrapperV1(WindowAttentionV1):
    def __init__(self, shift_size, input_resolution, **kwargs):
        super(WindowAttentionWrapperV1, self).__init__(**kwargs)
        self.shift_size = shift_size
        self.input_resolution = input_resolution

        if self.shift_size > 0:
            attn_mask = calculate_mask(input_resolution, self.window_size, shift_size)
        else:
            attn_mask = None
        self.register_buffer("attn_mask", attn_mask)

    def forward(self, x, x_size):
        H, W = x_size
        B, L, C = x.shape
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))

        # partition windows
        x = window_partition(x, self.window_size)  # nW*B, wh, ww, C
        x = x.view(-1, prod(self.window_size), C)  # nW*B, wh*ww, C

        # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
        if self.input_resolution == x_size:
            attn_mask = self.attn_mask
        else:
            attn_mask = calculate_mask(x_size, self.window_size, self.shift_size)
            attn_mask = attn_mask.to(x.device)

        # attention
        x = super(WindowAttentionWrapperV1, self).forward(x, mask=attn_mask)
        # nW*B, wh*ww, C

        # merge windows
        x = x.view(-1, *self.window_size, C)
        x = window_reverse(x, self.window_size, x_size)  # B, H, W, C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        x = x.view(B, H * W, C)

        return x


class SwinTransformerBlockV1(nn.Module):
    r"""Swin Transformer Block.
    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(
        self,
        dim,
        input_resolution,
        num_heads,
        window_size=7,
        shift_size=0,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        use_pe=True,
        res_scale=1.0,
    ):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert (
            0 <= self.shift_size < self.window_size
        ), "shift_size must in 0-window_size"
        self.res_scale = res_scale

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttentionWrapperV1(
            shift_size=self.shift_size,
            input_resolution=self.input_resolution,
            dim=dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            use_pe=use_pe,
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=drop,
        )

    def forward(self, x, x_size):
        # Window attention
        x = x + self.res_scale * self.drop_path(self.attn(self.norm1(x), x_size))
        # FFN
        x = x + self.res_scale * self.drop_path(self.mlp(self.norm2(x)))

        return x

    def extra_repr(self) -> str:
        return (
            f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
            f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}"
        )

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # W-MSA/SW-MSA
        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops


class PatchMerging(nn.Module):
    r"""Patch Merging Layer.
    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x

    def extra_repr(self) -> str:
        return f"input_resolution={self.input_resolution}, dim={self.dim}"

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.dim
        flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
        return flops


class PatchEmbed(nn.Module):
    r"""Image to Patch Embedding
    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(
        self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None
    ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [
            img_size[0] // patch_size[0],
            img_size[1] // patch_size[1],
        ]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        flops = 0
        H, W = self.img_size
        if self.norm is not None:
            flops += H * W * self.embed_dim
        return flops


class PatchUnEmbed(nn.Module):
    r"""Image to Patch Unembedding
    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(
        self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None
    ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [
            img_size[0] // patch_size[0],
            img_size[1] // patch_size[1],
        ]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

    def forward(self, x, x_size):
        B, HW, C = x.shape
        x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1])  # B Ph*Pw C
        return x

    def flops(self):
        flops = 0
        return flops


class Linear(nn.Linear):
    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__(in_features, out_features, bias)

    def forward(self, x):
        B, C, H, W = x.shape
        x = bchw_to_blc(x)
        x = super(Linear, self).forward(x)
        x = blc_to_bchw(x, (H, W))
        return x


def build_last_conv(conv_type, dim):
    if conv_type == "1conv":
        block = nn.Conv2d(dim, dim, 3, 1, 1)
    elif conv_type == "3conv":
        # to save parameters and memory
        block = nn.Sequential(
            nn.Conv2d(dim, dim // 4, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
            nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
            nn.Conv2d(dim // 4, dim, 3, 1, 1),
        )
    elif conv_type == "1conv1x1":
        block = nn.Conv2d(dim, dim, 1, 1, 0)
    elif conv_type == "linear":
        block = Linear(dim, dim)
    return block


# class BasicLayer(nn.Module):
#     """A basic Swin Transformer layer for one stage.
#     Args:
#         dim (int): Number of input channels.
#         input_resolution (tuple[int]): Input resolution.
#         depth (int): Number of blocks.
#         num_heads (int): Number of attention heads.
#         window_size (int): Local window size.
#         mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
#         qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
#         qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
#         drop (float, optional): Dropout rate. Default: 0.0
#         attn_drop (float, optional): Attention dropout rate. Default: 0.0
#         drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
#         norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
#         downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
#         args: Additional arguments
#     """

#     def __init__(
#         self,
#         dim,
#         input_resolution,
#         depth,
#         num_heads,
#         window_size,
#         mlp_ratio=4.0,
#         qkv_bias=True,
#         qk_scale=None,
#         drop=0.0,
#         attn_drop=0.0,
#         drop_path=0.0,
#         norm_layer=nn.LayerNorm,
#         downsample=None,
#         args=None,
#     ):

#         super().__init__()
#         self.dim = dim
#         self.input_resolution = input_resolution
#         self.depth = depth

#         # build blocks
#         self.blocks = nn.ModuleList(
#             [
#                 _parse_block(
#                     dim=dim,
#                     input_resolution=input_resolution,
#                     num_heads=num_heads,
#                     window_size=window_size,
#                     shift_size=0
#                     if args.no_shift
#                     else (0 if (i % 2 == 0) else window_size // 2),
#                     mlp_ratio=mlp_ratio,
#                     qkv_bias=qkv_bias,
#                     qk_scale=qk_scale,
#                     drop=drop,
#                     attn_drop=attn_drop,
#                     drop_path=drop_path[i]
#                     if isinstance(drop_path, list)
#                     else drop_path,
#                     norm_layer=norm_layer,
#                     stripe_type="H" if (i % 2 == 0) else "W",
#                     args=args,
#                 )
#                 for i in range(depth)
#             ]
#         )
#         # self.blocks = nn.ModuleList(
#         #     [
#         #         STV1Block(
#         #             dim=dim,
#         #             input_resolution=input_resolution,
#         #             num_heads=num_heads,
#         #             window_size=window_size,
#         #             shift_size=0 if (i % 2 == 0) else window_size // 2,
#         #             mlp_ratio=mlp_ratio,
#         #             qkv_bias=qkv_bias,
#         #             qk_scale=qk_scale,
#         #             drop=drop,
#         #             attn_drop=attn_drop,
#         #             drop_path=drop_path[i]
#         #             if isinstance(drop_path, list)
#         #             else drop_path,
#         #             norm_layer=norm_layer,
#         #         )
#         #         for i in range(depth)
#         #     ]
#         # )

#         # patch merging layer
#         if downsample is not None:
#             self.downsample = downsample(
#                 input_resolution, dim=dim, norm_layer=norm_layer
#             )
#         else:
#             self.downsample = None

#     def forward(self, x, x_size):
#         for blk in self.blocks:
#             x = blk(x, x_size)
#         if self.downsample is not None:
#             x = self.downsample(x)
#         return x

#     def extra_repr(self) -> str:
#         return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

#     def flops(self):
#         flops = 0
#         for blk in self.blocks:
#             flops += blk.flops()
#         if self.downsample is not None:
#             flops += self.downsample.flops()
#         return flops