Spaces:
Running
on
T4
Running
on
T4
File size: 11,262 Bytes
561c629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import cv2
import argparse
import numpy as np
import copy
import os, sys, copy, shutil
from kornia import morphology as morph
import math
import gc, time
import torch
import torch.multiprocessing as mp
from torch.nn import functional as F
from multiprocessing import set_start_method
# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from opt import opt
from degradation.ESR.utils import filter2D, np2tensor, tensor2np
# This config is found by the author
# modify if not the desired output
XDoG_config = dict(
size=0,
sigma=0.6,
eps=-15,
phi=10e8,
k=2.5,
gamma=0.97
)
# I wanted the gamma between [0.97, 0.98], but it depends on the image so I made it move randomly comment out if this is not needed
# In our case, black means background information; white means hand-drawn line
XDoG_config['gamma'] += 0.01 * np.random.rand(1)
dilation_kernel = torch.tensor([[1, 1, 1],[1, 1, 1],[1, 1, 1]]).cuda()
white_color_value = 1 # In binary map, 0 stands for black and 1 stands for white
def DoG(image, size, sigma, k=1.6, gamma=1.):
g1 = cv2.GaussianBlur(image, (size, size), sigma)
g2 = cv2.GaussianBlur(image, (size, size), sigma*k)
return g1 - gamma * g2
def XDoG(image, size, sigma, eps, phi, k=1.6, gamma=1.):
eps /= 255
d = DoG(image, size, sigma, k, gamma)
d /= d.max()
e = 1 + np.tanh(phi * (d - eps))
e[e >= 1] = 1
return e
class USMSharp(torch.nn.Module):
'''
Basically, the same as Real-ESRGAN
'''
def __init__(self, type, radius=50, sigma=0):
# 感觉radius有点大
super(USMSharp, self).__init__()
if radius % 2 == 0:
radius += 1
self.radius = radius
kernel = cv2.getGaussianKernel(radius, sigma)
kernel = torch.FloatTensor(np.dot(kernel, kernel.transpose())).unsqueeze_(0).cuda()
self.register_buffer('kernel', kernel)
self.type = type
def forward(self, img, weight=0.5, threshold=10, store=False):
# weight=0.5, threshold=10
if self.type == "cv2":
# pre-process cv2 type
img = np2tensor(img)
blur = filter2D(img, self.kernel.cuda())
if store:
cv2.imwrite("blur.png", tensor2np(blur))
residual = img - blur
if store:
cv2.imwrite("residual.png", tensor2np(residual))
mask = torch.abs(residual) * 255 > threshold
if store:
cv2.imwrite("mask.png", tensor2np(mask))
mask = mask.float()
soft_mask = filter2D(mask, self.kernel.cuda())
if store:
cv2.imwrite("soft_mask.png", tensor2np(soft_mask))
sharp = img + weight * residual
sharp = torch.clip(sharp, 0, 1)
if store:
cv2.imwrite("sharp.png", tensor2np(sharp))
output = soft_mask * sharp + (1 - soft_mask) * img
if self.type == "cv2":
output = tensor2np(output)
return output
def get_xdog_sketch_map(img_bgr, outlier_threshold):
gray = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)
sketch_map = gen_xdog_image(gray, outlier_threshold)
sketch_map = np.stack((sketch_map, sketch_map, sketch_map), axis=2) # concatenate to 3 dim
return np.uint8(sketch_map)
def process_single_img(queue, usm_sharper, extra_sharpen_time, outlier_threshold):
counter = 0
while True:
counter += 1
if counter == 10:
counter = 0
gc.collect()
print("We will sleep here to clear memory")
time.sleep(5)
info = queue[0]
queue = queue[1:]
if info == None:
break
img_dir, store_path = info
print("We are processing ", img_dir)
img = cv2.imread(img_dir)
img = usm_sharper(img, store=False, threshold=10)
first_sharpened_img = copy.deepcopy(img)
for _ in range(extra_sharpen_time):
# sketch_map = get_xdog_sketch_map(img_temp)
img = usm_sharper(img, store=False, threshold=10)
# img = (sharpened_img * sketch_map) + (org_img * (1-sketch_map))
sketch_map = get_xdog_sketch_map(img, outlier_threshold)
img = (img * sketch_map) + (first_sharpened_img * (1-sketch_map))
cv2.imwrite(store_path, img)
print("Finish all program")
def outlier_removal(img, outlier_threshold):
''' Remove outlier pixel after finding the sketch
Here, black(0) means background information; white(1) means hand-drawn line
'''
global_list = set()
h,w = img.shape
def dfs(i, j):
'''
Using Depth First Search to find the full area of mapping
'''
if (i,j) in visited:
# If this is an already visited pixel, return
return
if (i,j) in global_list:
# If it is already existed in the global list, return
return
if i >= h or j >= w or i < 0 or j < 0:
# If it is out of boundary, return
return
if img[i][j] == white_color_value:
visited.add((i,j))
# If it is over threshold, we won't remove them
if len(visited) >= 100:
return
dfs(i+1, j)
dfs(i, j+1)
dfs(i-1, j)
dfs(i, j-1)
dfs(i-1, j-1)
dfs(i+1, j+1)
dfs(i-1, j+1)
dfs(i+1, j-1)
return
def bfs(i, j):
'''
Using Breadth First Search to find the full area of mapping
'''
if (i,j) in visited:
# If this is an already visited pixel, return
return
if (i,j) in global_list:
# If it is already existed in the global list, return
return
visited.add((i,j))
if img[i][j] != white_color_value:
return
queue = [(i, j)]
while queue:
base_row, base_col = queue.pop(0)
for dx, dy in [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)]:
row, col = base_row+dx, base_col+dy
if (row, col) in visited:
# If this is an already visited pixel, continue
continue
if (row, col) in global_list:
# If it is already existed in the global list, continue
continue
if row >= h or col >= w or row < 0 or col < 0:
# If it is out of boundary, continue
continue
if img[row][col] == white_color_value:
visited.add((row, col))
queue.append((row, col))
temp = np.copy(img)
for i in range(h):
for j in range(w):
if (i,j) in global_list:
continue
if temp[i][j] != white_color_value:
# We only consider white color (hand-drawn line) situation
continue
global visited
visited = set()
# USE depth/breadth first search to find neighbor white value
bfs(i, j)
if len(visited) < outlier_threshold:
# If the number of white pixels counting all neighbors are less than the outlier_threshold, paint the whole region to black (0:background symbol)
for u, v in visited:
temp[u][v] = 0
# Add those searched line to global_list to speed up
for u, v in visited:
global_list.add((u, v))
return temp
def active_dilate(img):
def np2tensor(np_frame):
return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).cuda().float()/255
def tensor2np(tensor):
# tensor should be batch size1 and cannot be grayscale input
return (np.transpose(tensor.detach().cpu().numpy(), (1, 2, 0))) * 255
dilated_edge_map = morph.dilation(np2tensor(np.expand_dims(img, 2)), dilation_kernel)
return tensor2np(dilated_edge_map[0]).squeeze(2)
def passive_dilate(img):
# IF there is 3 white pixel in 9 block, we will fill in
h,w = img.shape
def detect_fill(i, j):
if img[i][j] == white_color_value:
return False
def sanity_check(i, j):
if i >= h or j >= w or i < 0 or j < 0:
return False
if img[i][j] == white_color_value:
return True
return False
num_white = sanity_check(i-1,j-1) + sanity_check(i-1,j) + sanity_check(i-1,j+1) + sanity_check(i,j-1) + sanity_check(i,j+1) + sanity_check(i+1,j-1) + sanity_check(i+1,j) + sanity_check(i+1,j+1)
if num_white >= 3:
return True
temp = np.copy(img)
for i in range(h):
for j in range(w):
global visited
visited = set()
should_fill = detect_fill(i, j)
if should_fill:
temp[i][j] = 1
# return True to say that we need to remove it; else, we don't need to remove it
return temp
def gen_xdog_image(gray, outlier_threshold):
'''
Returns:
dogged (numpy): binary map in range (1 stands for white pixel)
'''
dogged = XDoG(gray, **XDoG_config)
dogged = 1 - dogged # black white transform
# Remove unnecessary outlier
dogged = outlier_removal(dogged, outlier_threshold)
# Dilate the image
dogged = passive_dilate(dogged)
return dogged
if __name__ == "__main__":
# Parse variables available
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_dir', type = str)
parser.add_argument('-o', '--store_dir', type = str)
parser.add_argument('--outlier_threshold', type = int, default=32)
args = parser.parse_args()
input_dir = args.input_dir
store_dir = args.store_dir
outlier_threshold = args.outlier_threshold
print("We are handling Strong USM sharpening on hand-drawn line for Anime images!")
num_workers = 8
extra_sharpen_time = 2
if os.path.exists(store_dir):
shutil.rmtree(store_dir)
os.makedirs(store_dir)
dir_list = []
for img_name in sorted(os.listdir(input_dir)):
input_path = os.path.join(input_dir, img_name)
output_path = os.path.join(store_dir, img_name)
dir_list.append((input_path, output_path))
length = len(dir_list)
# USM sharpener preparation
usm_sharper = USMSharp(type="cv2").cuda()
usm_sharper.share_memory()
for idx in range(num_workers):
set_start_method('spawn', force=True)
num = math.ceil(length / num_workers)
request_list = dir_list[:num]
request_list.append(None)
dir_list = dir_list[num:]
# process_single_img(request_list, usm_sharper, extra_sharpen_time) # This is for debug purpose
p = mp.Process(target=process_single_img, args=(request_list, usm_sharper, extra_sharpen_time, outlier_threshold))
p.start()
print("Submitted all jobs!") |