APISR / app.py
HikariDawn's picture
fix: path error and delete unnecessary package for inference
6d00ac8
raw
history blame
3.96 kB
import os, sys
import cv2
import gradio as gr
import torch
import numpy as np
from torchvision.utils import save_image
# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from test_code.inference import super_resolve_img
from test_code.test_utils import load_grl, load_rrdb
def auto_download_if_needed(weight_path):
if os.path.exists(weight_path):
return
if not os.path.exists("pretrained"):
os.makedirs("pretrained")
if weight_path == "pretrained/4x_APISR_GRL_GAN_generator.pth":
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/4x_APISR_GRL_GAN_generator.pth")
os.system("mv 4x_APISR_GRL_GAN_generator.pth pretrained")
if weight_path == "pretrained/2x_APISR_RRDB_GAN_generator.pth":
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/2x_APISR_RRDB_GAN_generator.pth")
os.system("mv 2x_APISR_RRDB_GAN_generator.pth pretrained")
def inference(img_path, model_name):
try:
weight_dtype = torch.float32
# Load the model
if model_name == "4xGRL":
weight_path = "pretrained/4x_APISR_GRL_GAN_generator.pth"
auto_download_if_needed(weight_path)
generator = load_grl(weight_path, scale=4) # Directly use default way now
elif model_name == "2xRRDB":
weight_path = "pretrained/2x_APISR_RRDB_GAN_generator.pth"
auto_download_if_needed(weight_path)
generator = load_rrdb(weight_path, scale=2) # Directly use default way now
else:
raise gr.Error(error)
generator = generator.to(dtype=weight_dtype)
# In default, we will automatically use crop to match 4x size
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, crop_for_4x=True)
save_image(super_resolved_img, "SR_result.png")
outputs = cv2.imread("SR_result.png")
outputs = cv2.cvtColor(outputs, cv2.COLOR_RGB2BGR)
return outputs
except Exception as error:
raise gr.Error(f"global exception: {error}")
if __name__ == '__main__':
MARKDOWN = \
"""
## APISR: Anime Production Inspired Real-World Anime Super-Resolution (CVPR 2024)
[GitHub](https://github.com/Kiteretsu77/APISR) | [Paper](https://arxiv.org/abs/2403.01598)
If APISR is helpful for you, please help star the GitHub Repo. Thanks!
"""
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(MARKDOWN)
with gr.Row(elem_classes=["container"]):
with gr.Column(scale=2):
input_image = gr.Image(type="filepath", label="Input")
model_name = gr.Dropdown(
[
"2xRRDB",
"4xGRL"
],
type="value",
value="4xGRL",
label="model",
)
run_btn = gr.Button(value="Submit")
with gr.Column(scale=3):
output_image = gr.Image(type="numpy", label="Output image")
with gr.Row(elem_classes=["container"]):
gr.Examples(
[
["__assets__/lr_inputs/image-00277.png"],
["__assets__/lr_inputs/image-00542.png"],
["__assets__/lr_inputs/41.png"],
["__assets__/lr_inputs/f91.jpg"],
["__assets__/lr_inputs/image-00440.png"],
["__assets__/lr_inputs/image-00164.jpg"],
["__assets__/lr_inputs/img_eva.jpeg"],
],
[input_image],
)
run_btn.click(inference, inputs=[input_image, model_name], outputs=[output_image])
block.launch()