APISR / loss /perceptual_loss.py
HikariDawn's picture
feat: initial push
561c629
raw
history blame
9.84 kB
# -*- coding: utf-8 -*-
import os
import torch
from collections import OrderedDict
from torch import nn as nn
from torchvision.models import vgg as vgg
NAMES = {
'vgg11': [
'conv1_1', 'relu1_1', 'pool1', 'conv2_1', 'relu2_1', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2',
'pool5'
],
'vgg13': [
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5'
],
'vgg16': [
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2',
'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
'pool5'
],
'vgg19': [
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1',
'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1',
'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5'
]
}
def insert_bn(names):
"""Insert bn layer after each conv.
Args:
names (list): The list of layer names.
Returns:
list: The list of layer names with bn layers.
"""
names_bn = []
for name in names:
names_bn.append(name)
if 'conv' in name:
position = name.replace('conv', '')
names_bn.append('bn' + position)
return names_bn
class VGGFeatureExtractor(nn.Module):
"""VGG network for feature extraction.
In this implementation, we allow users to choose whether use normalization
in the input feature and the type of vgg network. Note that the pretrained
path must fit the vgg type.
Args:
layer_name_list (list[str]): Forward function returns the corresponding
features according to the layer_name_list.
Example: {'relu1_1', 'relu2_1', 'relu3_1'}.
vgg_type (str): Set the type of vgg network. Default: 'vgg19'.
use_input_norm (bool): If True, normalize the input image. Importantly,
the input feature must in the range [0, 1]. Default: True.
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
Default: False.
requires_grad (bool): If true, the parameters of VGG network will be
optimized. Default: False.
remove_pooling (bool): If true, the max pooling operations in VGG net
will be removed. Default: False.
pooling_stride (int): The stride of max pooling operation. Default: 2.
"""
def __init__(self,
layer_name_list,
vgg_type,
use_input_norm=True,
range_norm=False,
requires_grad=False,
remove_pooling=False,
pooling_stride=2):
super(VGGFeatureExtractor, self).__init__()
self.layer_name_list = layer_name_list
self.use_input_norm = use_input_norm
self.range_norm = range_norm
self.names = NAMES[vgg_type.replace('_bn', '')]
if 'bn' in vgg_type:
self.names = insert_bn(self.names)
# only borrow layers that will be used to avoid unused params
max_idx = 0
for v in layer_name_list:
idx = self.names.index(v)
if idx > max_idx:
max_idx = idx
VGG_PRETRAIN_PATH = {"vgg19": "pre_trinaed/vgg19-dcbb9e9d.pth",
"vgg16": "pre_trinaed/vgg16-397923af.pth",
"vgg13": "pre_trinaed/vgg13-19584684.pth"}
if os.path.exists(VGG_PRETRAIN_PATH[vgg_type]):
vgg_net = getattr(vgg, vgg_type)(pretrained=False)
state_dict = torch.load(VGG_PRETRAIN_PATH[vgg_type], map_location=lambda storage, loc: storage)
vgg_net.load_state_dict(state_dict)
else:
vgg_net = getattr(vgg, vgg_type)(pretrained=True)
features = vgg_net.features[:max_idx + 1]
modified_net = OrderedDict()
for k, v in zip(self.names, features):
if 'pool' in k:
# if remove_pooling is true, pooling operation will be removed
if remove_pooling:
continue
else:
# in some cases, we may want to change the default stride
modified_net[k] = nn.MaxPool2d(kernel_size=2, stride=pooling_stride)
else:
modified_net[k] = v
self.vgg_net = nn.Sequential(modified_net)
if not requires_grad:
self.vgg_net.eval()
for param in self.parameters():
param.requires_grad = False
if self.use_input_norm:
# the mean is for image with range [0, 1]
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
# the std is for image with range [0, 1]
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""
if self.range_norm:
x = (x + 1) / 2
if self.use_input_norm:
x = (x - self.mean) / self.std
output = {}
for key, layer in self.vgg_net._modules.items():
x = layer(x)
if key in self.layer_name_list:
output[key] = x.clone()
return output
def get_params_num(self):
inp = torch.rand(1, 3, 400, 400)
pytorch_total_params = sum(p.numel() for p in self.vgg_net.parameters())
# count_ops(self.vgg_net, inp)
print(f"pathGAN has param {pytorch_total_params//1000} K params")
class PerceptualLoss(nn.Module):
"""Perceptual loss with commonly used style loss.
Args:
layer_weights (dict): The weight for each layer of vgg feature.
Here is an example: {'conv5_4': 1.}, which means the conv5_4
feature layer (before relu5_4) will be extracted with weight
1.0 in calculating losses.
vgg_type (str): The type of vgg network used as feature extractor.
Default: 'vgg19'.
use_input_norm (bool): If True, normalize the input image in vgg.
Default: True.
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
Default: False.
perceptual_weight (float): If `perceptual_weight > 0`, the perceptual
loss will be calculated and the loss will multiplied by the
weight. Default: 1.0.
style_weight (float): If `style_weight > 0`, the style loss will be
calculated and the loss will multiplied by the weight.
Default: 0.
criterion (str): Criterion used for perceptual loss. Default: 'l1'.
"""
def __init__(self,
layer_weights,
vgg_type,
use_input_norm=True,
range_norm=False,
perceptual_weight=1.0,
style_weight=0.,
criterion='l1'):
super(PerceptualLoss, self).__init__()
self.perceptual_weight = perceptual_weight
self.layer_weights = layer_weights
self.vgg = VGGFeatureExtractor(
layer_name_list=list(layer_weights.keys()),
vgg_type=vgg_type,
use_input_norm=use_input_norm,
range_norm=range_norm).cuda()
self.criterion_type = criterion
self.criterion = torch.nn.L1Loss()
self.vgg_type = vgg_type
def forward(self, x, gt):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
gt (Tensor): Ground-truth tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""
# extract vgg features
x_features = self.vgg(x)
gt_features = self.vgg(gt.detach())
# calculate perceptual loss
if self.perceptual_weight > 0:
percep_loss = 0
for k in x_features.keys():
# save_img(x_features[k], str(k) + "_out")
# save_img(gt_features[k], str(k) + "_gt")
layer_weight = self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k]
percep_loss += layer_weight
percep_loss *= self.perceptual_weight
else:
percep_loss = None
# No style_loss
return percep_loss
if __name__ == "__main__":
layer_weights = {'conv1_2': 0.1, 'conv2_2': 0.1, 'conv3_4': 1, 'conv4_4': 1, 'conv5_4': 1}
vgg_type = 'vgg19'
loss = PerceptualLoss(layer_weights, vgg_type, perceptual_weight=1.0).cuda()
import torchvision.transforms as transforms
import cv2
gen = transforms.ToTensor()(cv2.imread('datasets/train_gen/img_00002.png')).cuda()
gt = transforms.ToTensor()(cv2.imread('datasets/train_hr_anime_usm_720p/img_00002.png')).cuda()
loss(gen, gt)
# model = loss.vgg
# pytorch_total_params = sum(p.numel() for p in model.parameters())
# print(f"Perceptual VGG has param {pytorch_total_params//1000000} M params")